精英家教网 > 高中数学 > 题目详情
18.设数列{an}为等比数列,且每项都大于1,则lga1lga2012$\sum_{i=1}^{2011}$$\frac{1}{lg{a}_{i}l{ga}_{i+1}}$的值为2011.

分析 当公比为1时,求出结果为2011,当公比q≠1时,利用裂项求和法能求出结果.

解答 解:当公比为1时,lga1lga2012$\sum_{i=1}^{2011}$$\frac{1}{lg{a}_{i}l{ga}_{i+1}}$=2011,
当公比q≠1时,lga1lga2012$\sum_{i=1}^{2011}$$\frac{1}{lg{a}_{i}l{ga}_{i+1}}$
=$\frac{lg{a}_{1}lg{a}_{2012}}{lgq}$$\sum_{i=1}^{2011}(\frac{1}{lg{a}_{1}}-\frac{1}{lg{a}_{i+1}})$
$\frac{lg{a}_{1}lg{a}_{2012}}{lgq}$($\frac{1}{lg{a}_{1}}-\frac{1}{lg{a}_{2012}}$)=2011.
故答案为:2011.

点评 本题考查等比数列的通项公式的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.若$\sqrt{(2-x)^{2}}$+($\sqrt{x-1}$)2=1,求:①变量x的取值范围;②实数a满足不等式|ax-3|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=3+log3x,x∈[1,9],求函数y=[f(x)]2+f(x2)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,B、C是海岸线l上相距50km的两个海边小城,圆O是半径为10km的某海岛小城的环岛路,A为圆O上的物资中转站,其中∠AOC=$\frac{2}{3}$π,OC=25km,且l∥OA,为使中转站A的物资运往B城,计划从A地沿环岛路至某地P,再沿水路PQ至海岸线l上Q,最后沿海岸线QB至B城修建运输线,其中PQ∥OC,Q在线段BC上.
(1)设∠POC=θ,求运输线总长度y关于θ的函数;
(2)求运输线总长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}的前n项和为Sn,若an=$\frac{1}{n(n+1)}$,则S19等于(  )
A.$\frac{18}{19}$B.$\frac{20}{19}$C.$\frac{19}{20}$D.$\frac{21}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集U={1,2,3,4,5},A={1,5},B={2,4},则B∩(∁UA)=(  )
A.{2,3,4}B.{2}C.{2,4}D.{1,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若$\overrightarrow{a}$与$\overrightarrow{b}$不共线,而$\overrightarrow{a}$+3$\overrightarrow{b}$与λ$\overrightarrow{a}$-$\overrightarrow{b}$共线,则实数λ=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数y=Asin(ωx+φ)(A>0,ω>0)的图象的一部分如图所示:
(1)求函数的表达式及它的最小正周期;
(2)求它的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.i是虚数单位,若复数(1-2i)(a+i)是纯虚数,且a+(b-1)i<0(a,b∈R),复数z满足|z|=3,则|z+a-bi|的最大值为(  )
A.$3-\sqrt{5}$B.$\sqrt{2}$C.$3+\sqrt{5}$D.$\sqrt{26}$

查看答案和解析>>

同步练习册答案