精英家教网 > 高中数学 > 题目详情
16.等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则使Sn取最小值的n等于5.

分析 利用等差数列的性质判断数列的项与数列的单调性,然后求解即可.

解答 解:由题意S10=0,S15=25,可知${a_5}+{a_6}=0,{a_8}=\frac{5}{3}$,故数列{an}是递增数列,所以a5<0,a6>0,所以使Sn取最小值的n=5.
故答案为:5.

点评 本题考查等差数列的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=-f(2a-x),则称f(x)为“准奇函数”.给定下列函数:①f(x)=$\sqrt{x}$;②f(x)=ex;③f(x)=cos(x+1);④f(x)=tanx.其中的“准奇函数”的有(  )
A.①③B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow a$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow b$=(-$\sqrt{3}$,1),$\overrightarrow c$=$\overrightarrow a$+λ$\overrightarrow b$,则$\overrightarrow c$•$\overrightarrow a$等于(  )
A.λB.C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ=8$\sqrt{2}cos(θ-\frac{3π}{4})$,曲线C2的参数方程为$\left\{\begin{array}{l}x=8cosθ\\ y=3sinθ\end{array}\right.(θ$为参数).
(Ⅰ)将曲线C1的极坐标方程化为直角坐标方程,将曲线C2的参数方程化为普通方程;
(Ⅱ)若P为C2上的动点,求点P到直线l:$\left\{\begin{array}{l}x=3+2t\\ y=-2+t\end{array}\right.(t$为参数)的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足$\frac{sinA}{sinB}$=-$\frac{sinC}{tanC}$.
(1)求$\frac{3{a}^{2}+{b}^{2}}{{c}^{2}}$的值;
(2)若c=4,且△ABC的面积为$\sqrt{3}$,求边a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若非零向量$\overrightarrow a,\overrightarrow b$满足|${\overrightarrow a$+$\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|,则$\overrightarrow a$与$\overrightarrow b$所成的夹角大小为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=lnx与g(x)=$\frac{x}{e}$,则它们的图象交点个数为(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的函数y=f(x)满足f(x-3)=f(x+3)与f(3-x)=f(3+x),x∈[-3,0]时.f(x)=2-x-2,方程f(x)-2log3(2x+3)=0在区间(0,2016)内解的个数是(  )
A.4B.3C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在一块长30m、宽10m的矩形科技园地面上画出三小块全等的矩形做试验田,四周及间隔的观测路的宽度都相等,设计试验田与观测路面的面积之比等于14:11.

(1)求四周及间隔的观测路的宽度;
(2)在三小块全等矩形试验田的周边加设护栏,预计每米长度护栏(高度不变)造价为9元,求护栏总造价.

查看答案和解析>>

同步练习册答案