分析 由题意离心率可得a与c,b与c的关系,代入椭圆方程,和直线方程联立,利用弦长公式列式求得c,则椭圆方程可求.
解答 解:由$e=\frac{c}{a}=\frac{2}{3}$,得${a}^{2}=\frac{9}{4}{c}^{2}$,${b}^{2}={a}^{2}-{c}^{2}=\frac{5}{4}{c}^{2}$,
则椭圆方程为$\frac{{x}^{2}}{\frac{9}{4}{c}^{2}}+\frac{{y}^{2}}{\frac{5}{4}{c}^{2}}=1$,即20x2+36y2=45c2.
∵直线l过右焦点F,且倾斜角为60°,
∴直线l的方程为y=$\sqrt{3}$(x-c),
联立$\left\{\begin{array}{l}{y=\sqrt{3}x-\sqrt{3}c}\\{20{x}^{2}+36{y}^{2}=45{c}^{2}}\end{array}\right.$,消去y得:128x2-216cx+63c2=0.
设A(x1,y1),B(x2,y2),
则${x}_{1}+{x}_{2}=\frac{216c}{128},{x}_{1}{x}_{2}=\frac{63{c}^{2}}{128}$,
∴|AB|=$\sqrt{1+(\sqrt{3})^{2}}•\sqrt{(\frac{216c}{128})^{2}-\frac{252{c}^{2}}{128}}$=$\frac{15}{4}$,解得c2=4.
∴椭圆方程为:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$.
点评 本题考查椭圆的简单性质,考查了弦长公式的应用,考查计算能力,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | -$\frac{π}{3}$ | D. | -$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com