精英家教网 > 高中数学 > 题目详情
4.满足a,b∈{0,1,2 },且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为(  )
A.5B.6C.7D.8

分析 由于关于x的方程ax2+2x+b=0有实数根,所以分两种情况:(1)当a≠0时,方程为一元二次方程,那么它的判别式大于或等于0,由此即可求出a的取值范围;(2)当a=0时,方程为2x+b=0,此时一定有解.

解答 解:(1)当a=0时,方程为2x+b=0,此时一定有解;
此时b=0,1,2;即,(0,0),(0,1),(0,2),共3种.
(2)当a≠0时,方程为一元二次方程,
∴△=4-4ab≥0,
∴ab≤1.所以a=1,2,此时a,b的对数为(1,0),(1,1),(2,0),共3种,
关于x的方程ax2+2x+b=0有实数解的有序数对的个数为6种,
故选B.

点评 本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根,在解题时要注意分类讨论思想运用.考查分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,过F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,椭圆的离心率为$\frac{2}{3}$.如果|AB|=$\frac{15}{4}$,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在R上的奇函数,若f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,1)}\\{\frac{1}{2}{x}^{2}-3x+\frac{7}{2},x∈[1,+∞)}\end{array}\right.$,则关于x的方程f(x)+a=0(0<a<1)的所有根之和为1-2a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某中学为了增强学生的汉语兴趣,举行了汉字成语听写竞赛,共有450名学生参加了本次竞赛活动(其中高一225人,高二135人,高三90人),为了解本次竞赛活动成绩情况,现用分层抽样的方法从中抽取了部分学生的成绩(得分均为整数,分值l00分)进行统计,请你根据尚未完成的频率分布表解答下列问题:
分组频数频率
[60,70)0.16
[70,80)14
[80,90)160.32
[90,100]0.24
合计
(1)求①,②,③处的数值;
(2)求高二年级共抽取多少人;
(3)估计参赛学生平均成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取一个球,已知它不是黑球,试求它是黄球的概率.
(2)某个工厂的工人月收入服从正态分布N(500,202),该工厂共有1200名工人,试估计月收入在
440元以下和560元以上的工人大约有多少?
[注:P(μ-σ,μ+σ)=0.6826   P(μ-2σ,μ+σ)=0.9544   P(μ-3σ,μ+3σ)=0.9974].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知平面ABC外一点P,且PH⊥平面ABC于点H.给出下列四个命题:
①若PA⊥BC,PB⊥AC,则点H是△ABC的垂心;
②若PA,PB,PC两两互相垂直,则点H是△ABC的垂心;
③若∠ABC=90°,点H是AC的中点,则PA=PB=PC;
 ④若PA=PB=PC,则点H是△ABC的外心.
其中正确命题的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=lnx-ax2(a>0).
(1)讨论函数f(x)零点的个数;
(2)若函数f(x)有极大值为$-\frac{1}{2}$,且存在实数m,n,m<n使得f(m)=f(n),证明:m+n>4a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则曲线f(x)在(0,f(0))处在的切线方程为6$\sqrt{3}$x+2y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式-x2+3x-2≥0的解集是{x|1≤x≤2}.

查看答案和解析>>

同步练习册答案