精英家教网 > 高中数学 > 题目详情
12.某中学为了增强学生的汉语兴趣,举行了汉字成语听写竞赛,共有450名学生参加了本次竞赛活动(其中高一225人,高二135人,高三90人),为了解本次竞赛活动成绩情况,现用分层抽样的方法从中抽取了部分学生的成绩(得分均为整数,分值l00分)进行统计,请你根据尚未完成的频率分布表解答下列问题:
分组频数频率
[60,70)0.16
[70,80)14
[80,90)160.32
[90,100]0.24
合计
(1)求①,②,③处的数值;
(2)求高二年级共抽取多少人;
(3)估计参赛学生平均成绩.

分析 (1)根据频数、频率与样本容量的关系,即可求出对应的值;
(2)根据分层抽样原理即可求出高二年级抽取的人数;
(3)根据频率分布表,即可计算参赛学生的平均成绩.

解答 解:(1)根据[80,90)内的频数为16,频率为0.32,
得出样本容量是$\frac{16}{0.32}$=50,
所以①处的频数为50×0.24=12,
②处的频率为$\frac{14}{50}$=0.28,
③处的频数为50×0.16=8;
(2)根据分层抽样原理得,高二年级共抽取
135×$\frac{50}{450}$=15(人);
(3)根据频率分布表,估计参赛学生平均成绩为
65×0.16+75×0.28+85×0.32+95×0.24=81.4.

点评 本题考查了频数、频率与样本容量以及分层抽样原理和平均数的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=Asin(2x-φ)的图象关于点($\frac{4π}{3}$,0)成中心对称,则|φ|最小的φ的值为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.-$\frac{π}{3}$D.-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和Sn满足:Sn=2an-3n(n∈N*).
(1)求a1,a2的值,
(2)求证:数列{an+3}是等比数列,并求数列{an}的通项公式;
(3)在数列{Sn}中取出若干项S${\;}_{{n}_{1}}$,S${\;}_{{n}_{2}}$,S${\;}_{{n}_{3}}$,…,S${\;}_{{n}_{k}}$,…,若数列{nk}是等差数列,试判断数列{S${\;}_{{n}_{k}}$}是否为等差数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{x+4}{x}$与g(x)=|x2-6x|的定义域为[1,4].
(1)求这两个函数的值域并作处这两个函数的图象;
(2)若函数g(x)的图象与直线y=k仅有一个交点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给出下列四个命题:
(1)函数f(x)=loga(2x-1)-1的图象过定点(1,0);
(2)函数y=log2x与函数y=2x互为反函数;
(3)已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2-|x|;
(4)若loga$\frac{1}{2}$>1,则a的取值范围是($\frac{1}{2}$,1)或(2,+∞);
(5)函数y=loga(5-ax)在区间[-1,3)上单调递减,则a的范围是(1,$\frac{5}{3}$];
其中所有正确命题的序号是(2)(3)(5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-(k-2)x+k2+3k+5有两个零点.
(1)若函数的两个零点都大于-2,求k的取值范围;
(2)若函数的两个零点是α和β,求α22的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.满足a,b∈{0,1,2 },且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{x}$+alnx,a∈R.
(1)求函数f(x)的单调递减区间;
(2)当x∈[$\frac{1}{2}$,1]时,f(x)的最小值是0,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:0<m<4是函数f(x)=mx2-mx+1恒大于0的充分不必要条件;命题q:f(x)=2x2是幂函数.则下列命题是真命题的是(  )
A.p∧qB.¬p∨qC.¬p∧¬qD.p∧¬q

查看答案和解析>>

同步练习册答案