【题目】已知点
是圆
上任意一点,点
与点
关于原点对称,线段
的垂直平分线分别与
,
交于
,
两点.
(1)求点
的轨迹
的方程;
(2)过点
的动直线
与点
的轨迹
交于
,
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,求出点
的坐标;若不存在,请说明理由.
【答案】(1)
(2)![]()
【解析】试题分析:(1)本问考查曲线轨迹方程的求法,画出图形分析,根据垂直平分线的性质可知
,再根据
,于是得到
所以点
的轨迹
为以
为焦点的椭圆,可以求出轨迹方程;(2)首先考虑当直线斜率存在时,方程可设为
,设
,联立直线与椭圆方程,消去y,得到关于x的一元二次方程后,列出
,假设在
轴上是否存在定点
,使以
为直径的圆恒过这个点,则
即
于是经计算可以求出m的值,再检验当斜率不存在时也符合上面求出的值.
试题解析:(I)由题意得![]()
点
的轨迹
为以
为焦点的椭圆
点
的轨迹
的方程为![]()
(II)直线
的方程可设为
,设![]()
联立
可得![]()
由求根公式化简整理得![]()
假设在
轴上是否存在定点
,使以
为直径的圆恒过这个点,则
即![]()
![]()
![]()
![]()
![]()
![]()
求得![]()
因此,在
轴上存在定点
,使以
为直径的圆恒过这个点.
科目:高中数学 来源: 题型:
【题目】某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如表:
停靠时间 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
轮船数量 | 12 | 12 | 17 | 20 | 15 | 13 | 8 | 3 |
(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为
小时,求
的值;
(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠
小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
① “若
,则
有实根”的逆否命题为真命题;
②命题“
”为真命题的一个充分不必要条件是
;
③命题“
,使得
”的否定是真命题;
④命题
函数
为偶函数,命题
函数
在
上为增函数,
则
为真命题.
其中,正确的命题是( )
A. ①② B. ①③ C. ②③ D. ③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=lnx-x+a+1.
(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范围;
(2)求证:在(1)的条件下,当x>1时,
x2+ax-a>xlnx+
成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )
A. (-∞,0) B. ![]()
C. (0,1) D. (0,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
![]()
(1)求证:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左焦点为
,过点
的直线交椭圆于
,
两点,
的最大值是
,
的最小值是
,且满足
.
![]()
(1)求椭圆的离心率;
(2)设线段
的中点为
,线段
的垂直平分线与
轴、
轴分别交于
,
两点,
是坐标原点,记
的面积为
,
的面积为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD的底面为矩形,AB=
,BC=1,E,F分别是AB,PC的中点,DE⊥PA.
(1)求证:EF∥平面PAD;
(2)求证:平面PAC⊥平面PDE.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com