精英家教网 > 高中数学 > 题目详情

【题目】两台车床加工同一种机械零件如下表:

分类

合格品

次品

总计

第一台车床加工的零件数

35

5

40

第二台车床加工的零件数

50

10

60

总计

85

15

100

从这100个零件中任取一个零件,求:

(1)取得合格品的概率;

(2)取得零件是第一台车床加工的合格品的概率.

【答案】(1)0.85; (2).

【解析】

根据概率公式计算即可

先求出第一台加工的概率,再求出第一台加工的合格品的概率,即可求得答案

(1)记在100个零件中任取一个零件,取得合格品记为A,因为在100个零件中,有85个为合格品,

则P(A)==0.85.

(2)从100个零件中任取一个零件是第一台加工的概率为P1

第一台车床加工的合格品的概率为P2

所以取得零件是第一台车床加工的合格品的概率P=P1·P2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD为矩形,PA平面ABCD,PA=AD,M,N,Q分别是PC,AB,CD的中点.

求证:(1)MN平面PAD;

(2)平面QMN平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:m>2,则方程x2+2x+3m=0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通部门对某路段公路上行驶的汽车速度实施监控,从速度在50﹣90km/h的汽车中抽取150辆进行分析,得到数据的频率分布直方图如图所示,则速度在70km/h以下的汽车有辆.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,已知椭圆C: =1(a>b>0)的离心率e= ,左顶点为A(﹣4,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.

(1)求椭圆C的方程;
(2)已知P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在说明理由;
(3)若过O点作直线l的平行线交椭圆C于点M,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买2台机器该种机器使用三年后即被淘汰.机器有一易损零件在购进机器时可以额外购买这种零件作为备件每个200元.在机器使用期间如果备件不足再购买则每个500元.现需决策在购买机器时应同时购买几个易损零件为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率X表示2台机器三年内共需更换的易损零件数n表示购买2台机器的同时购买的易损零件数.

(1)X的分布列;

(2)若要求P(Xn)0.5确定n的最小值;

(3)以购买易损零件所需费用的期望值为决策依据n19n20之中选其一应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中如像招数五问中有如下问题:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升。其大意为官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3,在该问题中第3天共分发大米(

A. 192 B. 213 C. 234 D. 255

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由代数式的乘法法则类比推导向量的数量积的运算法则:

①“mn=nm”类比得到“a·b=b·a”;

②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;

③“t≠0,mt=ntm=n”类比得到“c≠0,a·c=b·ca=b”;

④“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;

⑤“(m·n)t=m(n·t)”类比得到“(a·b)·c=a(b·c)”;

⑥“”类比得到.以上的式子中,类比得到的结论正确的是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+ax2+bx+1的导数满足,其中常数a,b∈R.

(1)求曲线y=f(x)在点(1,f(1))处的切线方程;

(2)设,求函数g(x)的极值.

查看答案和解析>>

同步练习册答案