精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点。                                    
(1)求证:ACSD;    
(2)若SD平面PAC,求二面角P-AC-D的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

(1)  略
(2)  
(3)  棱SC上存在一点E
解法一:
(1)连BD,设AC交BD于O,由题意。在正方形ABCD中,,所以,得.
(2)设正方形边长,则
,所以,
,由(1)知,所以,
,所以是二面角的平面角。
,知,所以,
即二面角的大小为
(3)在棱SC上存在一点E,使
由(2)可得,故可在上取一点,使,过的平行线与的交点即为。连BN。在中知,又由于,故平面,得,由于,故.
解法二:(1);连,设交于,由题意知.以O为坐标原点,分别为轴、轴、轴正方向,建立坐标系如图。
设底面边长为,则高
于是         
    故  从而  
(2)由题设知,平面的一个法向量,平面的一个法向量,设所求二面角为,则,所求二面角的大小为
(3)在棱上存在一点使.
由(2)知是平面的一个法向量,
且  
设    
则     
而      
即当时,    
不在平面内,故
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点, PD⊥平面ABCD,且PD=AD=,CD=1.
(Ⅰ)证明:MN∥平面PCD;
(Ⅱ)证明:MC⊥BD;
(Ⅲ)求二面角A—PB—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E是MN的中点。

(1)求证:平面AEC⊥平面AMN;   (6分)
(2)求二面角M-AC-N的余弦值。  (6分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)在多面体ABCDEFG中,底面ABCD是等腰梯形,,,H是棱EF的中点
(1)证明:平面平面CDE;
(2)求平面FGB与底面ABCD所成锐二面角的正切值。
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,正方体ABCD—A1B1C1D1中,M、N分别为AB、BC的中点.
(Ⅰ)求证:平面B1MN⊥平面BB1D1D;
(II)当点P为棱DD1中点时,求直线MB1与平面A1C1P所成角的正弦值;
            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四棱锥的底面是正方形,,点E在棱PB上.
(1)求证:平面;     
(2)当且E为PB的中点时,
求AE与平面PDB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(9分)已知上的点.
(1)当中点时,求证
(2)当二面角的大小为的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, 在直三棱柱中,,,点 的中点,
(1)      求证:;    
(2)      求证:
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面六面体中,既与共面也与共面的棱的条数为 (  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案