精英家教网 > 高中数学 > 题目详情
平面六面体中,既与共面也与共面的棱的条数为 (  )
A.3B.4C.5D.6
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知是腰长为2的等腰直角三角形(如图1),,在边上分别取点,使得,把沿直线折起,使=90°,得四棱锥(如图2).在四棱锥中,

(I)求证:CE⊥AF; (II)当时,试在上确定一点G,使得,并证明你的结论.




查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.
(1)求证:AE//平面DCF;
(2)当AB的长为何值时,二面角A-EF-C的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在四棱锥中,底面
的中点.
(Ⅰ)求和平面所成的角的大小;
(Ⅱ)证明平面
(Ⅲ)求二面角的正弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)正方体的棱长为的交点,上一点,且
(1)求证:平面; (2)求异面直线所成角的余弦值;
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点。                                    
(1)求证:ACSD;    
(2)若SD平面PAC,求二面角P-AC-D的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,△PAB所在的平面α和四边形ABCD所在
的平面β互相垂直,且,AD=4,
BC=8,AB=6,若
则点P在平面内的轨迹是          (      )
A.圆的一部分B.椭圆的一部分
C.双曲线的一部分D.抛物线的一部分

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


如图,在直角梯形中,
的中点,是线段的中点,沿把平面折起到平面的位置,使平面,则下列命题正确的个数是            

(1)二面角成角
(2)设折起后几何体的棱的中点,则平面
(3)平面和平面所成的锐二面角的大小为
(4)点到平面的距离为

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将正方形ABCD沿对角线BD折成直二面角,有如下四个结论:
①AC⊥BD;
②△ACD是等边三角形;
③AB与面BCD成60°角;
④AB与CD成60°角.
请你把正确的结论的序号都填上            

查看答案和解析>>

同步练习册答案