精英家教网 > 高中数学 > 题目详情
16.作出函数y=tanx+sinx-|tanx-sinx|,$x∈({\frac{π}{2},\frac{3π}{2}})$的图象,并写出函数的单调区间(不必证明)

分析 由题意作出函数y=tanx+sinx-|tanx-sinx|,$x∈({\frac{π}{2},\frac{3π}{2}})$的图象,从而由图象写出函数的单调区间.

解答 解:作函数y=tanx+sinx-|tanx-sinx|,$x∈({\frac{π}{2},\frac{3π}{2}})$的图象如下,

结合图象可知,
函数y=tanx+sinx-|tanx-sinx|在($\frac{π}{2}$,π)上单调递增,
在(π,$\frac{3π}{2}$)上单调递减.

点评 本题考查了学生的作图能力及数形结合的思想应用,同时考查了函数图象的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的通项为an,前n项和为sn,且an是sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求数列{an}、{bn}的通项公式an,bn
(2)设{bn}的前n项和为Bn,证明$\frac{1}{B_1}+\frac{1}{B_2}+…+\frac{1}{B_n}<\frac{7}{4}$
(3)设Tn=$\frac{{b}_{1}}{{a}_{1}}$+$\frac{{b}_{2}}{{a}_{2}}$+…+$\frac{{b}_{n}}{{a}_{n}}$,若对一切正整数n,Tn<c(c∈Z)恒成立,求c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示B岛在A岛南偏东750方向,距离A岛$4\sqrt{3}$海里,A岛观察所发现在B岛正北方向与A岛的北偏东600方向的交点处D有海上非法走私交易活动,A岛观察人员马上通知在B岛东北方向,距离B岛7海里C处的缉私艇在半小时内赶到D处,求缉私艇的速度至少每小时多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某班委会3名男生与2名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线m:2x-y-3=0,n:x+y-3=0.
(1)求过两直线m,n交点且与直线l:x+2y-1=0平行的直线方程;
(2)求过两直线m,n交点且与两坐标轴围成面积为4的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中:
①线性回归方程$\hat y$=$\hat b$x+$\hat a$必过点($\bar x$,$\bar y)$;
②在回归方程$\hat y$=3-5x中,当变量x增加一个单位时,y平均增加5个单位;
③在回归分析中,相关指数R2为0.80的模型比相关指数R2为0.98的模型拟合的效果要好;
④在回归直线$\hat y$=0.5x-8中,变量x=2时,变量y的值一定是-7.
其中假命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于(  )
A.{x|3≤x<4}B.{x|x≥3}C.{x|x>2}D.{x|x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.演绎推理“因为f′(x0)=0时,x0是f(x)的极值点.而对于函数f(x)=x3,f′(0)=0.所以0是函数f(x)=x3的极值点.”所得结论错误的原因是(  )
A.大前提错误B.小前提错误
C.推理形式错误D.大前提和小前提都错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某社区要为小凯等4名志愿者和他们帮助的2位老人拍照,要求这6人排成一排,小凯必须与2位老人都相邻,且2位老人不排在两端,则不同的排法种数是(  )
A.12B.24C.36D.48

查看答案和解析>>

同步练习册答案