精英家教网 > 高中数学 > 题目详情
4.某班委会3名男生与2名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是0.7.

分析 至少有1名女生当选的对立事件是当选的都是男生,从5人中选2人共有C52=10种选法,而从3个男生中选2人共有C32=3种选法,求比值,用对立事件之间的关系得到结果.

解答 解:∵从5人中选2人共有C52=10种选法,
从3个男生中选2人共有C32=3种选法,
∴没有女生的概率是$\frac{3}{10}$=0.3,
∴至少有1名女生当选的概率1-0.3=10.7,
故答案为;0.7.

点评 本题主要考查互斥事件的概率加法公式,等可能事件的概率,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57.0
若由资料知y对x呈线性相关关系.
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程$\widehat{y}$=bx+a的回归系数a,b;$b=\frac{\sum _{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum _{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}},a=\overline{y}-b\overline{x}$
(3)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果椭圆的两焦点为F1(-1,0)和F2(1,0),P是椭圆上的一点,且|PF1|、|F1F2|、|PF2|成等差数列,那么椭圆的方程是(  )
A.$\frac{x^2}{3}+\frac{y^2}{4}$=1B.$\frac{x^2}{4}+\frac{y^2}{3}$=1C.$\frac{x^2}{16}+\frac{y^2}{9}$=1D.$\frac{x^2}{16}+\frac{y^2}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40$\sqrt{2}$海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ(其中sinθ=$\frac{\sqrt{26}}{26}$,0°<θ<90°)且与点A相距10$\sqrt{13}$海里的位置C.
(1)求该船的行驶速度(单位:海里/小时);
(2)若该船不改变航行方向,当它行使到A的正南方向时,求该船与观测站A的距离;不改变航向继续航行,判断它是否会进入警戒水域,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,使得对任意的实数x,有f(x+T)=Tf(x)成立.
(1)证明:f(x)=x2不属于集合M;
(2)设f(x)∈M,且T=2.已知当1<x<2时,f(x)=x+lnx,求当-3<x<-2时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x≤0}\\{x+y+1≥0}\end{array}\right.$,那么3x($\frac{1}{9}$)y的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.作出函数y=tanx+sinx-|tanx-sinx|,$x∈({\frac{π}{2},\frac{3π}{2}})$的图象,并写出函数的单调区间(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设z=$\frac{2i}{1+i}$(i是虚数单位),则z的共轭复数$\overline z$对应的点位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数y=$\sqrt{x+1}$的定义域为M,已知全集U=R,集合N={x|0<x≤2},则M∩∁UN=(  )
A.{x|-1≤x<0或x≥2}B.{x|-1≤x≤0或x≥2}C.{x|-1≤x≤0或x>2}D.{x|0≤x<2}

查看答案和解析>>

同步练习册答案