精英家教网 > 高中数学 > 题目详情
12.在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40$\sqrt{2}$海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ(其中sinθ=$\frac{\sqrt{26}}{26}$,0°<θ<90°)且与点A相距10$\sqrt{13}$海里的位置C.
(1)求该船的行驶速度(单位:海里/小时);
(2)若该船不改变航行方向,当它行使到A的正南方向时,求该船与观测站A的距离;不改变航向继续航行,判断它是否会进入警戒水域,说明理由.

分析 (1)求得cosθ的值,进而令余弦定理求得BC,除以时间即可求得速度.
(2)建立坐标系,分别求得x2,y2,进而求得过直线B,C的直线l的斜率,求得直线l的方程.进而求得点E到直线的距离判断与7的大小关系.

解答 解:(1)如图,AB=40$\sqrt{2}$,AC=10$\sqrt{13}$,∠BAC=θ,sinθ=$\frac{\sqrt{26}}{26}$,
由于°<θ<90°,
所以cosθ=$\sqrt{1-(\frac{\sqrt{26}}{26})^{2}}$=$\frac{5\sqrt{26}}{26}$
由余弦定理得BC=$\sqrt{A{B}^{2}+A{C}^{2}-2AB•AC•cosθ}$=10$\sqrt{5}$
所以船的行驶速度为$\frac{10\sqrt{5}}{\frac{2}{3}}$=15$\sqrt{5}$(海里/小时);
(2)如图所示,以A为原点建立平面直角坐标系,设点B、C的坐标分别是B(x1,y1),C(x1,y2),BC与x轴的交点为D
由题设有x1=y1=$\frac{\sqrt{2}}{2}$AB=40
x2=ACcos∠CAD=10$\sqrt{13}$cos(45°-θ)=30,
y2=ACsin∠CAD=10$\sqrt{13}$(45°-θ)=20
所以过点B、C的直线l的斜率k=$\frac{20}{10}$=2,
直线l的方程为y=2x-40
又点E(0,-55)到直线l的距离d=$\frac{|0+55-40|}{\sqrt{1+4}}$=3$\sqrt{5}$<7,
所以船会进入警戒水域.

点评 本题主要考查了解三角形问题的实际应用.建立数学模型,把实际问题转化为几何知识来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知a1=1,an+1=($\frac{1+a}{2}$+$\frac{a}{2{n}^{2}+2n}$)an+$\frac{1}{{2}^{n}}$.
(1)当a=0时,求{an}的通项公式;
(2)当a=1时,证明an$<{e}^{\frac{3}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如果下边程序执行后输出的结果是132,那么程序中UNTIL后面的“条件”应为i<11(或i≤10).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
求:(1)若直线l过点P且与圆心C的距离为1,求直线l的方程;
(2)判断(1)中直线l与圆C的位置关系,若相交,求出相交弦的长;
(3)设过点P的直线l1 与圆C交于M、N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示B岛在A岛南偏东750方向,距离A岛$4\sqrt{3}$海里,A岛观察所发现在B岛正北方向与A岛的北偏东600方向的交点处D有海上非法走私交易活动,A岛观察人员马上通知在B岛东北方向,距离B岛7海里C处的缉私艇在半小时内赶到D处,求缉私艇的速度至少每小时多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知λ(x)=ax3+x2-ax(a≠0),若存在实数a∈(-∞,-$\frac{1}{2}$],使得函数μ(x)=λ(x)+λ′(x),x∈[-1,b]在x=-1处取得最小值,则实数b的最大值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某班委会3名男生与2名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中:
①线性回归方程$\hat y$=$\hat b$x+$\hat a$必过点($\bar x$,$\bar y)$;
②在回归方程$\hat y$=3-5x中,当变量x增加一个单位时,y平均增加5个单位;
③在回归分析中,相关指数R2为0.80的模型比相关指数R2为0.98的模型拟合的效果要好;
④在回归直线$\hat y$=0.5x-8中,变量x=2时,变量y的值一定是-7.
其中假命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,BC=1,BB1=2,AB=$\sqrt{2}$,∠BCC1=$\frac{π}{3}$.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1
(Ⅲ)在(Ⅱ)的条件下,求二面角A-EB1-A1的正切值.

查看答案和解析>>

同步练习册答案