精英家教网 > 高中数学 > 题目详情
2.已知a1=1,an+1=($\frac{1+a}{2}$+$\frac{a}{2{n}^{2}+2n}$)an+$\frac{1}{{2}^{n}}$.
(1)当a=0时,求{an}的通项公式;
(2)当a=1时,证明an$<{e}^{\frac{3}{2}}$.

分析 (1)通过将a=0及a1=1代入递推式可得an+1=$\frac{1}{2}$an+$\frac{1}{{2}^{n}}$,变形可得2n+1an+1=2nan+2,进而可得结论;
(2)通过a=1易得an+1>an>1,放缩可得an+1<(1+$\frac{1}{{2n}^{2}+2n}$+$\frac{1}{{2}^{n}}$)an,两边取自然对数并利用ln(1+x)<x,整理可得lnan+1-lnan<$\frac{1}{{2n}^{2}+2n}$+$\frac{1}{{2}^{n}}$,累加即可.

解答 (1)解:当a=0时,a1=1,an+1=$\frac{1}{2}$an+$\frac{1}{{2}^{n}}$,
∴2n+1an+1=2nan+2,
∴数列{2nan}是首项为2,公差为2的等差数列,
∴2nan=2+2(n-1)=2n,
∴an=$\frac{2n}{{2}^{n}}$=$\frac{n}{{2}^{n-1}}$;
(2)证明:当a=1时,显然an+1>an>1,
∴an+1=(1+$\frac{1}{{2n}^{2}+2n}$)an+$\frac{1}{{2}^{n}}$<(1+$\frac{1}{{2n}^{2}+2n}$+$\frac{1}{{2}^{n}}$)an
两边取自然对数,得:lnan+1<ln(1+$\frac{1}{{2n}^{2}+2n}$+$\frac{1}{{2}^{n}}$)+lnan
又∵ln(1+x)<x,
∴lnan+1<ln(1+$\frac{1}{{2n}^{2}+2n}$+$\frac{1}{{2}^{n}}$)+lnan<$\frac{1}{{2n}^{2}+2n}$+$\frac{1}{{2}^{n}}$+lnan
∴lnan+1-lnan<$\frac{1}{{2n}^{2}+2n}$+$\frac{1}{{2}^{n}}$,
累加得:$\sum_{i=1}^{n-1}$(lnai+1-lnai)<$\sum_{i=1}^{n-1}$($\frac{1}{2{i}^{2}+2i}$+$\frac{1}{{2}^{i}}$)
=$\sum_{i=1}^{n-1}$[$\frac{1}{2}$($\frac{1}{i}$-$\frac{1}{i+1}$)+$\frac{1}{{2}^{i}}$]
=$\frac{1}{2}$(1-$\frac{1}{n}$)+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$
=$\frac{3}{2}$-$\frac{1}{2n}$-$\frac{1}{{2}^{n-1}}$<$\frac{3}{2}$,
即lnan-lna1<$\frac{3}{2}$,
又∵lna1=0,
∴lnan<$\frac{3}{2}$,∴an$<{e}^{\frac{3}{2}}$.

点评 本题是一道数列与不等式的综合题,考查求数列通项及其取值范围,考查对数的运算法则,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.曲线y=x3+1在点(-1,0)处的切线方程为3x-y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示的程序框图,若输出的S是62,则①可以为(  )
A.n≤3?B.n≤4?C.n≤5?D.n≤6?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线y=kx与曲线y=ex相切,则实数k=e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=x-lnx的单调递增区间是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设数列{an}共有n项(n≥3,n∈N*),且a1=an=1,对于每个i(1≤i≤n-1,n∈N*)均有$\frac{{{a_{i+1}}}}{a_i}∈\{\frac{1}{5},1,5\}$.当n=10时,满足条件的所有数列{an}的个数为(  )
A.215B.512C.1393D.3139

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57.0
若由资料知y对x呈线性相关关系.
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程$\widehat{y}$=bx+a的回归系数a,b;$b=\frac{\sum _{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum _{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}},a=\overline{y}-b\overline{x}$
(3)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|-2<x<3},B={x|m<x<m+1},且B⊆A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40$\sqrt{2}$海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ(其中sinθ=$\frac{\sqrt{26}}{26}$,0°<θ<90°)且与点A相距10$\sqrt{13}$海里的位置C.
(1)求该船的行驶速度(单位:海里/小时);
(2)若该船不改变航行方向,当它行使到A的正南方向时,求该船与观测站A的距离;不改变航向继续航行,判断它是否会进入警戒水域,说明理由.

查看答案和解析>>

同步练习册答案