精英家教网 > 高中数学 > 题目详情
14.复数$\frac{2+i}{1-i}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数代数形式的乘除运算化简,求出复数$\frac{2+i}{1-i}$在复平面内对应的点的坐标得答案.

解答 解:∵$\frac{2+i}{1-i}$=$\frac{(2+i)(1+i)}{(1-i)(1+i)}=\frac{1+3i}{2}=\frac{1}{2}+\frac{3}{2}i$,
∴复数$\frac{2+i}{1-i}$在复平面内对应的点的坐标为($\frac{1}{2},\frac{3}{2}$),位于第一象限.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n∈N*),则S6=(  )
A.44B.45C.$\frac{1}{3}•$(46-1)D.$\frac{1}{3}•$(45-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等比数列{an}的公比为q,前n项和为Sn,若点(n,Sn)在函数y=2n+1+m的图象上,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=(a-1)lnx-$\frac{1}{2}$x2,若?x1,x2∈(0,+∞),且x1≠x2,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,则实数a的取值范围是(  )
A.[1,+∞)B.(-∞,-1]C.(-∞,1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知线段AB长度为a(a为定值),在其上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,⊙P和⊙Q是这两个正方形的外接圆,它们交于点M、N.试以A为坐标原点,建立适当的平面直角坐标系.
(1)证明:不论点M如何选取,直线MN都通过一定点S;
(2)当$|AM|=\frac{1}{3}|AB|$时,过A作⊙Q的割线,交⊙Q于G、H两点,在线段GH上取一点K,使$\frac{1}{|AG|}+\frac{1}{|AH|}$=$\frac{2}{|AK|}$求点K的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“?x∈R,x2≠x”的否定是(  )
A.?x0∈R,x${\;}_{0}^{2}$=x0B.?x∈R,x2=xC.?x0∉R,x${\;}_{0}^{2}$≠x0D.?x∉R,x2≠x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题正确的是(  )
A.若p,q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件
B.若p为:?x∈R,x2+2x≤0则¬p为:?x∈R,x2+2x>0
C.命题p为真命题,命题q为假命题.则命题p∧(¬q),(¬p)∨q都是真命题
D.命题“若¬p,则q”的逆否命题是“若p,则¬q”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知定圆A:(x+$\sqrt{3}$)2+y2=16动圆M过点B($\sqrt{3}$,0),且和定圆A相切,动圆的圆心M的轨迹记为C,则曲线C的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数g(x)=2cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变)后得到h(x)的图象,设f(x)=$\frac{1}{4}$x2+h(x),则f′(x)的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案