分析 由题意求出f′(x)令x=1代入求出f′(1),可求出f(x)和f′(x)的表达式,再求出f(0)和f′(0)的值,代入点斜式方程化简求出切线方程,令y=0代入切线方程求出x的值即可.
解答 解:由题意知,f(x)=3x+2xf′(1),
∴f′(x)=(ln3)•3x+2f′(1),
令x=1代入上式得,f′(1)=(ln3)•3+2f′(1),
解得f′(1)=-3ln3,
∴f(x)=3x-6(ln3)x,f′(x)=(ln3)•3x-6ln3,
∴f(0)=1,f′(0)=ln3-6ln3=-5ln3,
则在x=0处的切线方程是y-1=-5ln3(x-0),即y=-5(ln3)x+1,
令y=0代入得,x=$\frac{1}{5ln3}$,
∴曲线f(x)在x=0处的切线在x轴上的截距为:$\frac{1}{5ln3}$,
故答案为$\frac{1}{5ln3}$.
点评 本题考查求导公式,导数的几何意义以及切线方程,以及直线的截距问题,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | {〔1,1〕} | B. | {〔-1,1〕} | C. | {〔1,0〕} | D. | {〔0,1〕} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 没有危害(人) | 有危害(人) | 合计 | |
| 喜欢吃零食 | 5 | 12 | |
| 不喜欢吃零食 | 40 | 28 | |
| 合计 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com