精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=-x2+ax(a∈R).
(1)当a=3时,求函数f(x)在$[{\frac{1}{2},2}]$上的最大值和最小值;
(2)当函数f(x)在$({\frac{1}{2},2})$单调时,求a的取值范围.

分析 (1)将a=3代入f(x)的表达式,求出函数的单调性,从而求出函数的最大值和最小值即可;
(2)求出函数的对称轴,根据函数的单调性得到关于a的不等式,解出即可.

解答 解:(1)a=3时,f(x)=-x2+3x=-${(x-\frac{3}{2})}^{2}+\frac{9}{4}$,
对称轴x=$\frac{3}{2}$,函数在[$\frac{1}{2}$,$\frac{3}{2}$)递增,在($\frac{3}{2}$,2]递减,
∴函数的最大值是f($\frac{3}{2}$)=$\frac{9}{4}$,函数的最小值是f($\frac{1}{2}$)=$\frac{5}{4}$;
(2)函数的对称轴x=$\frac{a}{2}$,
若函数f(x)在$({\frac{1}{2},2})$单调,
则$\frac{a}{2}$≤$\frac{1}{2}$或$\frac{a}{2}$≥2,解得:a≤1或a≥4.

点评 本题考查了二次函数的性质,考查函数的单调性、最值问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知非零向量$\overrightarrow{{e}_{1}}$,$\overline{{e}_{2}}$不共线.
(1)如果$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$+8$\overline{{e}_{2}}$,$\overline{CD}$=3($\overrightarrow{{e}_{1}}$-$\overline{{e}_{2}}$),求证:A、B、D三点共线;
(2)已知$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$,$\overrightarrow{BC}$=-λ$\overrightarrow{{e}_{1}}$-8$\overline{{e}_{2}}$,$\overline{CD}$=3$\overrightarrow{{e}_{1}}$-3$\overline{{e}_{2}}$,若A、B、D三点在同一条直线上,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{3}+{y^2}=1$和直线l:x+y-4=0,求椭圆上的点到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.e为自然对数的底数,定义函数shx=$\frac{{e}^{x}-{e}^{-x}}{2}$,chx=$\frac{{e}^{x}+{e}^{-x}}{2}$,若已知函数f(x)为奇函数,且满足f(1)=ch1,当x>0时,f(x)+xf′(x)>shx,则f(x)<$\frac{chx}{x}$的解集为(  )
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=x2-3x+4在x∈[-1,3]上的最大值和最小值分别为a,b,则a+b=$\frac{39}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列程序执行后输出的结果是(  )
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\sqrt{4-x}$+lg(x-1)的定义域为(1,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.己知函数f(x)=x3+ax+$\frac{1}{4}$,g(x)=-lnx用min{m,n}表示m,n中的最小值,设函数h(x)=min﹛(f(x),g(x)} (x>0),则当-$\frac{5}{4}$<a<-$\frac{3}{4}$时,h(x)的零点个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.用数学归纳法证明1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,从n=k到n=k+1,等号左边需增加的代数式为(k+1)(3k+4).

查看答案和解析>>

同步练习册答案