精英家教网 > 高中数学 > 题目详情
10.已知非零向量$\overrightarrow{{e}_{1}}$,$\overline{{e}_{2}}$不共线.
(1)如果$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$+8$\overline{{e}_{2}}$,$\overline{CD}$=3($\overrightarrow{{e}_{1}}$-$\overline{{e}_{2}}$),求证:A、B、D三点共线;
(2)已知$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$,$\overrightarrow{BC}$=-λ$\overrightarrow{{e}_{1}}$-8$\overline{{e}_{2}}$,$\overline{CD}$=3$\overrightarrow{{e}_{1}}$-3$\overline{{e}_{2}}$,若A、B、D三点在同一条直线上,求实数λ的值.

分析 (1)由题意可得$\overrightarrow{BD}$=5$\overrightarrow{AB}$,可得$\overrightarrow{AB}$与$\overrightarrow{BD}$共线,即得A、B、D三点共线;
(2)由A、B、D三点在同一条直线上可得$\overrightarrow{AB}$与$\overrightarrow{BD}$共线,可得λ的方程,解方程可得.

解答 解:(1)∵非零向量$\overrightarrow{{e}_{1}}$,$\overline{{e}_{2}}$不共线,
又∵$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$+8$\overline{{e}_{2}}$,$\overline{CD}$=3($\overrightarrow{{e}_{1}}$-$\overline{{e}_{2}}$),
∴$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overline{CD}$=5$\overrightarrow{{e}_{1}}$+5$\overline{{e}_{2}}$=5($\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$)=5$\overrightarrow{AB}$,
∴$\overrightarrow{AB}$与$\overrightarrow{BD}$共线,故A、B、D三点共线;
(2)∵$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$,$\overrightarrow{BC}$=-λ$\overrightarrow{{e}_{1}}$-8$\overline{{e}_{2}}$,$\overline{CD}$=3$\overrightarrow{{e}_{1}}$-3$\overline{{e}_{2}}$,
∴$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overline{CD}$=(3-λ)$\overrightarrow{{e}_{1}}$-11$\overline{{e}_{2}}$,
∵A、B、D三点在同一条直线上,
∴$\overrightarrow{AB}$与$\overrightarrow{BD}$共线,∴3-λ=-11,
解得λ=14.

点评 本题考查平行向量和共线向量,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知抛物线C1:x2=2py(p>0)的准线与抛物线C2:x2=-2py(p>0)交于A,B两点,C1的焦点为F,若△FAB的面积等于1,则C1的方程是(  )
A.x2=2yB.x2=$\sqrt{2}$yC.x2=yD.x2=$\frac{\sqrt{2}}{2}y$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果log35=a,则log925的值为(  )
A.2aB.4aC.aD.$\frac{1}{2}$a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.有下列说法:
①作正弦函数的图象时,单位圆的半径长与y轴的单位长度要一致;
②y=sinx,x∈[0,2π)的图象关于点P(π,0)对称;
③y=sinx,x∈[$\frac{π}{2}$,$\frac{5π}{2}$]的图象关于直线x=$\frac{3π}{2}$成轴对称图形;
④正弦函数y=sinx的图象不超出直线y=-1和y=1所夹的区域.
其中,正确说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的最大值和最小值:
(1)y=3-2cos(x+π);
(2)y=3cos2x-4cosx+1,x∈[$\frac{π}{3}$,$\frac{2π}{3}$];
(3)y=$\frac{cosx-2}{cosx-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列各三角函数值:
(1)sin$\frac{5π}{6}$;
(2)cos135°;
(3)tan225°;
(4)tan960°;
(5)sin$\frac{2π}{3}$;
(6)cos870°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足:a1=10,a2=5,an-an+2=2(n∈N*).求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),焦距为2c,A(-2c,0),B(2c,0),如果椭圆上存在一点P,使得AP⊥BP,则离心率的取值范围为(  )
A.$[\frac{{\sqrt{5}}}{5},\frac{1}{2})$B.$[\frac{{\sqrt{2}}}{2},\frac{4}{5})$C.$[\frac{{\sqrt{2}}}{2},1)$D.$(0,\frac{{\sqrt{5}}}{5}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=-x2+ax(a∈R).
(1)当a=3时,求函数f(x)在$[{\frac{1}{2},2}]$上的最大值和最小值;
(2)当函数f(x)在$({\frac{1}{2},2})$单调时,求a的取值范围.

查看答案和解析>>

同步练习册答案