分析 (1)由题意可得$\overrightarrow{BD}$=5$\overrightarrow{AB}$,可得$\overrightarrow{AB}$与$\overrightarrow{BD}$共线,即得A、B、D三点共线;
(2)由A、B、D三点在同一条直线上可得$\overrightarrow{AB}$与$\overrightarrow{BD}$共线,可得λ的方程,解方程可得.
解答 解:(1)∵非零向量$\overrightarrow{{e}_{1}}$,$\overline{{e}_{2}}$不共线,
又∵$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$+8$\overline{{e}_{2}}$,$\overline{CD}$=3($\overrightarrow{{e}_{1}}$-$\overline{{e}_{2}}$),
∴$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overline{CD}$=5$\overrightarrow{{e}_{1}}$+5$\overline{{e}_{2}}$=5($\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$)=5$\overrightarrow{AB}$,
∴$\overrightarrow{AB}$与$\overrightarrow{BD}$共线,故A、B、D三点共线;
(2)∵$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$,$\overrightarrow{BC}$=-λ$\overrightarrow{{e}_{1}}$-8$\overline{{e}_{2}}$,$\overline{CD}$=3$\overrightarrow{{e}_{1}}$-3$\overline{{e}_{2}}$,
∴$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overline{CD}$=(3-λ)$\overrightarrow{{e}_{1}}$-11$\overline{{e}_{2}}$,
∵A、B、D三点在同一条直线上,
∴$\overrightarrow{AB}$与$\overrightarrow{BD}$共线,∴3-λ=-11,
解得λ=14.
点评 本题考查平行向量和共线向量,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | x2=2y | B. | x2=$\sqrt{2}$y | C. | x2=y | D. | x2=$\frac{\sqrt{2}}{2}y$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{{\sqrt{5}}}{5},\frac{1}{2})$ | B. | $[\frac{{\sqrt{2}}}{2},\frac{4}{5})$ | C. | $[\frac{{\sqrt{2}}}{2},1)$ | D. | $(0,\frac{{\sqrt{5}}}{5}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com