精英家教网 > 高中数学 > 题目详情
20.已知抛物线C1:x2=2py(p>0)的准线与抛物线C2:x2=-2py(p>0)交于A,B两点,C1的焦点为F,若△FAB的面积等于1,则C1的方程是(  )
A.x2=2yB.x2=$\sqrt{2}$yC.x2=yD.x2=$\frac{\sqrt{2}}{2}y$

分析 由题意画出图形,求出△FAB的底边AB的长及高MF,代入三角形面积公式求得p值,则抛物线方程可求.

解答 解:如图,把y=-$\frac{p}{2}$代入x2=-2py,得x2=p2,∴x=±p,
则|AB|=2p,
又|MF|=p,
∴${S}_{△FAB}=\frac{1}{2}•2p•p={p}^{2}=1$,则p=1.
∴C1的方程是x2=2y.
故选:A.

点评 本题考查抛物线的简单性质,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.某大众创业公司,2015年底共有科研人员10人,公司全年产品总产值500万元,从2016年起该公司计划产品的年产值每年增加100万元,为扩大规模,科研人员每年净增a人,设从2016年起的第x年(x∈N*,2016年为第一年),该公司科研人员人均产值y万元,则y与x之间的函数关系式为$y=\frac{500+100x}{10+ax},x∈{N}^{*}$;为使该公司的人均产值每年都不低于前一年的人均产值,那么该公司每年增加的科研人员不能超过2人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{4}$a(x-2)4+(x-2)2+a(x-2)(a≠0),函数f(x)与函数g(x)的图象关于直线x=1对称.
(1)求函数g(x).
(2)a≥2时,求证:函数g(x)在区间($\frac{a}{a+1}$,1)不单调.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=lnx-a,若f(x)<x2在(1,+∞)上恒成立,则实数a的取值范围是(  )
A.[-1,+∞)B.(1,+∞)C.[1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,Sn=$\frac{1}{3}$(an-1)(n∈N,n≥1).
(1)求a1,a2
(2)求数列{an}的通项公式;
(3)bn=n,令cn=bnan,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式2sin2x≤1(x∈[0,2π])的解集为[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,$\frac{5π}{4}$]∪[$\frac{7π}{4}$,2π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a、b、c分别为角A、B、C所对的边,已知tan(A+B)=-$\sqrt{3}$,c=$\frac{7}{2}$,又△ABC面积S=$\frac{3\sqrt{3}}{2}$,则
(1)△ABC的周长是否为一定值?若是,请求出该定值;若不是,请说明理由.
(2)△ABC是否能够唯一确定?若能,请解出此三角形;若不能,请适当修改条件以确定△ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sin2α=$\frac{1}{4}$,$\frac{π}{4}$<α<$\frac{π}{2}$,则cos(α+$\frac{π}{4}$)=-$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知非零向量$\overrightarrow{{e}_{1}}$,$\overline{{e}_{2}}$不共线.
(1)如果$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$+8$\overline{{e}_{2}}$,$\overline{CD}$=3($\overrightarrow{{e}_{1}}$-$\overline{{e}_{2}}$),求证:A、B、D三点共线;
(2)已知$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$,$\overrightarrow{BC}$=-λ$\overrightarrow{{e}_{1}}$-8$\overline{{e}_{2}}$,$\overline{CD}$=3$\overrightarrow{{e}_{1}}$-3$\overline{{e}_{2}}$,若A、B、D三点在同一条直线上,求实数λ的值.

查看答案和解析>>

同步练习册答案