精英家教网 > 高中数学 > 题目详情
5.不等式2sin2x≤1(x∈[0,2π])的解集为[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,$\frac{5π}{4}$]∪[$\frac{7π}{4}$,2π].

分析 根据已知可得-$\frac{\sqrt{2}}{2}$≤sinx≤$\frac{\sqrt{2}}{2}$,根据正弦型函数的图象和性质,结合x∈[0,2π],可得答案.

解答 解:若2sin2x≤1,
则sin2x≤$\frac{1}{2}$,
则-$\frac{\sqrt{2}}{2}$≤sinx≤$\frac{\sqrt{2}}{2}$,
又∵x∈[0,2π],
∴x∈[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,$\frac{5π}{4}$]∪[$\frac{7π}{4}$,2π],
故答案为:[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,$\frac{5π}{4}$]∪[$\frac{7π}{4}$,2π].

点评 本题考查的知识点是三角不等式的解法,熟练掌握三角函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若x,y满足约束条件$\left\{\begin{array}{l}x+y≤0\\ x-y+1≥0\\ y≥0\end{array}\right.$,则z=-2x+y的最大值为(  )
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在△ABC中,$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BP}$=$\frac{1}{3}$$\overrightarrow{BD}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则下列关于λ,μ的值说法正确的是(  )
A.λ=$\frac{2}{3}$B.λ=$\frac{1}{3}$C.μ=$\frac{4}{9}$D.μ=$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求过点P(2,-4),且在坐标轴上的截距之和为5的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线C1:x2=2py(p>0)的准线与抛物线C2:x2=-2py(p>0)交于A,B两点,C1的焦点为F,若△FAB的面积等于1,则C1的方程是(  )
A.x2=2yB.x2=$\sqrt{2}$yC.x2=yD.x2=$\frac{\sqrt{2}}{2}y$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在区间[$\frac{1}{2}$,2]上,函数f(x)=-x2+px+q与g(x)=$\frac{x}{{x}^{2}+1}$在同一点取得相同的最大值,求f(x)在[$\frac{1}{2}$,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知四点A(2,3,1),B(-5,4,1),C(6,2,-3),D(5,-2,1),求通过点A且垂直于B,C,D所确定的平面的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{αn},其前n项和为Sn,且a1=$\frac{9}{2}$,Sn+Sn-1=2an(n≥2).
(1)求证:数列{Sn}是等比数列;
(2)设数列{bn}满足bn=$\left\{\begin{array}{l}{3(n=1)}\\{n{a}_{n}(n≥2,n∈N*)}\end{array}\right.$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列各三角函数值:
(1)sin$\frac{5π}{6}$;
(2)cos135°;
(3)tan225°;
(4)tan960°;
(5)sin$\frac{2π}{3}$;
(6)cos870°.

查看答案和解析>>

同步练习册答案