分析 (Ⅰ)求出函数的导数,求出f′(1),f(1),代入直线方程即可;
(Ⅱ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅲ)问题转化为即y=ex和y=ax在(0,1)上有交点,结合图象求出a的范围.
解答 解:(Ⅰ)当a=1时,${f^/}(x)=\frac{{{e^x}(x-1)}}{x^2}-1+\frac{1}{x}$,
f′(1)=0,f(1)=e-1.
∴方程为y=e-1.
(Ⅱ)$f'(x)=\frac{{{e^x}(x-1)}}{x^2}-a(1-\frac{1}{x})$
=$\frac{{{e^x}(x-1)-ax(x-1)}}{x^2}$
=$\frac{{({e^x}-ax)(x-1)}}{x^2}$.
当a≤0时,对于?x∈(0,+∞),ex-ax>0恒成立,
令f′(x)>0⇒x>1,令f′(x)<0⇒0<x<1,
∴f(x)在(0,1)递减,在(1,+∞)递增;
(Ⅲ)若f(x)在(0,1)内有极值,
则f′(x)=$\frac{{(e}^{x}-ax)(x-1)}{{x}^{2}}$=0在(0,1)内有解,
∴ex-ax=0在(0,1)内有解,即y=ex和y=ax在(0,1)上有交点,
如图示:
,
x=1时,y=ex=e,故a>e或a<0.
点评 本题考查了求曲线的切线方程问题,考查导数的应用,函数的单调性问题,考查数形结合思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+y-4=0 | B. | $y-2=-\frac{2}{x^2}(x-1)$ | C. | $y-2=\frac{1}{x^2}(x-1)$ | D. | x+2y-4=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com