精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=\left\{\begin{array}{l}f(x+1),x<4\\{2^x},x≥4\end{array}\right.$,则f(2+log23)=(  )
A.8B.12C.16D.24

分析 由已知得f(2+log23)=f(3+log23)=${2}^{3+lo{g}_{2}3}$,由此能求出结果.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}f(x+1),x<4\\{2^x},x≥4\end{array}\right.$,
∴f(2+log23)=f(3+log23)
=${2}^{3+lo{g}_{2}3}$=${2}^{3}×{2}^{lo{g}_{2}3}$=8×3=24.
故选:D.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若集合A={x∈N|5+4x-x2>0},B={x|x<3},则A∩B等于(  )
A.(-1,3)B.{1,2}C.0,3)D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}{x^2}$-2x,g(x)=alnx.
(1)讨论函数y=f(x)-g(x)的单调区间
(2)设h(x)=f(x)-g(x),若对任意两个不等的正数x1,x2,都有$\frac{{h({x_1})-h({x_2})}}{{{x_1}-{x_2}}}$>2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.把函数f(x)=2sin(x+2φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{2}$个单位长度之后,所得图象关于直线$x=\frac{π}{4}$对称,且f(0)<f($\frac{π}{2}$-φ),则φ=(  )
A.$\frac{π}{8}$B.$\frac{3π}{8}$C.$-\frac{π}{8}$D.$-\frac{3π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.
数学108103137112128120132
物理74718876848186
(Ⅰ)他的数学成绩与物理成绩哪个更稳定?请给出你的说明;
(Ⅱ)已知该生的物理成绩y与数学成绩x是线性相关的,求物理成绩y与数学成绩x的回归直线方程
(Ⅲ)若该生的物理成绩达到90分,请你估计他的数学成绩大约是多少?
(附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|log2|1-x||,若函数g(x)=f2(x)+af(x)+2b有6个不同的零点,则这6个零点之和为(  )
A.7B.6C.$\frac{11}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数g(x)=ex(x+1).
(1)求函数g(x)在(0,1)处的切线方程;
(2)设x>0,讨论函数h(x)=g(x)-a(x3+x2)(a>0)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,A1,A2为椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$长轴的左、右端点,O为坐标原点,S,Q,T为椭圆上不同于A1,A2的三点,直线QA1,QA2,OS,OT围成一个平行四边形OPQR,则|OS|2+|OT|2=(  )
A.14B.12C.9D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-2x-3<0},B={x||x|<2},则A∩B=(  )
A.{x|-2<x<2}B.{x|-2<x<3}C.{x|-1<x<3}D.{x|-1<x<2}

查看答案和解析>>

同步练习册答案