【题目】若正四面体PQMN的顶点分别在给定的四面体ABCD的面上,每个面上恰有一个点,那么,( ).
A. 当四面体ABCD是正四面体时,正四面体PQMN有无数个,否则,正四面体PQMN只有一个
B. 当四面体ABCD是正四面体时,正四面体PQMN有无数个,否则,正四面体PQMN不存在
C. 当四面体ABCD的三组对棱分别相等时,正四面体PQMN有无数个,否则,正四面体PQMN只有一个
D. 对任何四面体ABCD,正四面体PQMN都有无数个
科目:高中数学 来源: 题型:
【题目】以直角坐标系
的原点为极坐标系的极点,
轴的正半轴为极轴.已知曲线
的极坐标方程为
,
是
上一动点,
,点
的轨迹为
.
(1)求曲线
的极坐标方程,并化为直角坐标方程;
(2)若点
,直线
的参数方程
(
为参数),直线
与曲线
的交点为
,当
取最小值时,求直线
的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.来自100多个国家的近万名现役军人同台竞技.军运会召开前,为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:
组别 | (30,40) | (40,50) | (50,60) | (60,70) | (70,80) | (80,90) | (90,100) |
频数 | 5 | 30 | 40 | 50 | 45 | 20 | 10 |
(1)若此次问卷调查得分X整体服从正态分布
,用样本来估计总体,设
,
分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),
①求
的值;
②经计算
,求
的值.
(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于
的可以获得1次抽奖机会,得分不低于
的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品![]()
;抽中价值为30元的纪念品
的概率为
,现有市民张先生参加了此次问卷调查并成为幸运参与者,记
为他参加活动获得纪念品的总价值,求
的分布列和数学期望.
附:若
,则
,
.
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数),
是
上的动点,
点满足
,
点的轨迹为曲线
.
(Ⅰ)求
的普通方程;
(Ⅱ)在以
为极点,
轴的正半轴为极轴的极坐标系中,直线
与
交于
,
两点,交
轴于点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有( )
A.
种 B.
种 C.
种 D.
种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com