【题目】设,函数.
(I)证明:当时,对任意实数,直线总是曲线的切线;
(Ⅱ)若存在实数,使得对任意且,都有,求实数的最小值.
科目:高中数学 来源: 题型:
【题目】天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足.其中星等为的星的亮度为.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的倍,则与最接近的是(当较小时, )
A.1.24B.1.25C.1.26D.1.27
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若正四面体PQMN的顶点分别在给定的四面体ABCD的面上,每个面上恰有一个点,那么,( ).
A. 当四面体ABCD是正四面体时,正四面体PQMN有无数个,否则,正四面体PQMN只有一个
B. 当四面体ABCD是正四面体时,正四面体PQMN有无数个,否则,正四面体PQMN不存在
C. 当四面体ABCD的三组对棱分别相等时,正四面体PQMN有无数个,否则,正四面体PQMN只有一个
D. 对任何四面体ABCD,正四面体PQMN都有无数个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3+bx2+cx+d在x=1处取极小值,x=3处取极大值,且函数图象在(2,f(2))处的切线与直线x-5y=0平行.
(1)求实数abc的值;
(2)设函数f(x)=0有三个不相等的实数根,求d的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】最近的一次数学竞赛共6道试题,每题答对得7分,答错(或不答)得0分.赛后某参赛代表队获团体总分161分,且统计分数时发现:该队任两名选手至多答对两道相同的题目.没有三名选手都答对两道相同的题目.试问该队选手至少有多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中实数a为常数.
(I)当a=-l时,确定的单调区间:
(II)若f(x)在区间(e为自然对数的底数)上的最大值为-3,求a的值;
(Ⅲ)当a=-1时,证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次投篮测试中,有两种投篮方案:方案甲:先在A点投篮一次,以后都在B点投篮;方案乙:始终在B点投篮.每次投篮之间相互独立.某选手在A点命中的概率为,命中一次记3分,没有命中得0分;在B点命中的概率为,命中一次记2分,没有命中得0分,用随机变量表示该选手一次投篮测试的累计得分,如果的值不低于3分,则认为其通过测试并停止投篮,否则继续投篮,但一次测试最多投篮3次.
(1)若该选手选择方案甲,求测试结束后所得分的分布列和数学期望.
(2)试问该选手选择哪种方案通过测试的可能性较大?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中不可或缺的一部分.某市一调查机构针对该市市场占有率最高的甲、乙两家网络外卖企业(以下简称外卖甲,外卖乙)的经营情况进行了调查,调查结果如表:
1日 | 2日 | 3日 | 4日 | 5日 | |
外卖甲日接单(百单) | 5 | 2 | 9 | 8 | 11 |
外卖乙日接单(百单) | 2.2 | 2.3 | 10 | 5 | 15 |
(1)据统计表明,与之间具有线性相关关系.
(ⅰ)请用相关系数加以说明:(若,则可认为与有较强的线性相关关系(值精确到0.001))
(ⅱ)经计算求得与之间的回归方程为.假定每单外卖业务企业平均能获纯利润3元,试预测当外卖乙日接单量不低于2500单时,外卖甲所获取的日纯利润的大致范围:(值精确到0.01)
(2)试根据表格中这五天的日接单量情况,从平均值和方差角度说明这两家外卖企业的经营状况.
相关公式:相关系数,
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直角梯形与等腰直角三角形所在的平面互相垂直. ,,.
(1)求证:;
(2)求证:平面平面;
(3)线段上是否存在点,使平面?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com