精英家教网 > 高中数学 > 题目详情
a
b
 是不共线的两个非零向量,
(1)若
OA
=2
a
-
b
OB
=3
a
+
b
OC
=
a
-3
b
,求证:A、B、C三点共线;
(2)若8
a
+k
b
与k
a
+2
b
共线,求实数k的值.
考点:平行向量与共线向量
专题:平面向量及应用
分析:(1)利用向量的运算和共线定理即可得出;
(2)利用向量共线定理和向量基本定理即可得出.
解答: (1)证明:∵
OA
=2
a
-
b
OB
=3
a
+
b
OC
=
a
-3
b

AB
=
OB
-
OA
=(3
a
+
b
)-(2
a
-
b
)
=
a
+2
b

BC
=
OC
-
OB
=(
a
-3
b
)
-(3
a
+
b
)
=-2(
a
+2
b
)
=-2
AB

∴A、B、C三点共线;
(2)解:∵8
a
+k
b
与k
a
+2
b
共线,∴存在实数λ,使得
(8
a
+k
b
)=λ(k
a
+2
b
)⇒(8-λk) 
a
+(k-2λ) 
b
=0,
a
b
不共线,
8-λk=0
k-2λ=0

⇒8=2λ2⇒λ=±2,
∴k=2λ=±4.
点评:本题考查了向量的运算和共线定理、向量基本定理,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|-
1
2
<x<2},B={x|-1≤x≤1},则A∩B等于(  )
A、{x|1≤x<2}
B、{x|x<2}
C、{x|-1≤x<2}
D、{x|-
1
2
<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R函数f(x)满足f(x)+f(x+2)=0,且f(x-1)为奇函数,现有以下三种叙述:
(1)8是函数f(x)的一个周期;
(2)f(x)的图象关于点(3,0)对称;
(3)f(x)是偶函数.
其中正确的是(  )
A、(2)(3)
B、(1)(2)
C、(1)(3)
D、(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.
(1)求该抛物线方程;
(2)若AB的中点坐标为(1,-1),求直线AB方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的图象(部分)如图所示;
(Ⅰ)求函数f(x)的解析是;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且a=1,b+c=2f(A)=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次演讲比赛中,6位评委对一名选手打分的茎叶图如图所示,若去掉一个最高分和一个最低分,得到一组数据xi(1≤i≤4),在如图所示的程序框图中,x是这4个数据的平均数,则输出的v的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

岳阳市临港新区自2009年6月8日开港来,吸引了一批投资过亿元的现代工业和物流储运企业落户.根据规划,2025年新港将全部建成13个泊位,从2014年(第一年)开始对其中某个子港口今后10年的发展规划,有如下两种方案:
方案甲:按现状进行运营.据测算,每年可收入800万元,但由于港口淤积日益严重,从明年开始需投资进行清淤,第一年投资50万元,以后逐年递增20万元.
方案乙:从2014年起开始投资4000万元进港口改造,以彻底根治港口淤积并提高吞吐能力.港口改造需用时4年,在此期间边改造边运营.据测算,开始改造后港口第一年的收入为400万元,在以后的4年中,每年收入都比上一年增长50%,而后各年的收入都稳定在第5年的水平上.
(Ⅰ)至少经过多少年,方案乙能收回投资(累计总收益为正数)?
(Ⅱ)到哪一年,方案乙的累计总收益超过方案甲?(收益=收入-投资)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
2
sin
π
8
xcos
π
8
x+2
2
cos2
π
8
x-
2
,x∈R.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若函数f(x)图象上的两点P,Q的横坐标依次为2,4,O为坐标原点,求△OPQ的外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex-ax-a.
(1)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值;
(2)设g(x)=f(x)+
a
ex
,且A(x1,y1)、B(x1,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意a≤-1,直线AB的斜率恒大于常数m,求m的取值范围.

查看答案和解析>>

同步练习册答案