精英家教网 > 高中数学 > 题目详情
20.已知抛物线y2=4x,椭圆$\frac{x^2}{9}+\frac{y^2}{b}=1$,它们有共同的焦点F2,若P是两曲线的一个公共点,且F1是椭圆的另一个焦点,则△PF1F2的面积为(  )
A.$\sqrt{6}$B.$2\sqrt{6}$C.$\sqrt{3}$D.2

分析 由已知得椭圆的半焦距c=1,m=8,设P(x1,y1),求出x1=$\frac{3}{2}$,由此能求出${S}_{△P{F}_{1}{F}_{2}}$.

解答 解:依题意可知抛物线y2=4x焦点为(1,0),
∴椭圆的半焦距c=1,即9-m=1,m=8,
设P(x1,y1),由$\left\{\begin{array}{l}{\frac{{{x}_{1}}^{2}}{9}+\frac{{{y}_{1}}^{2}}{8}=1}\\{{{y}_{1}}^{2}=4{x}_{1}}\end{array}\right.$,得 2x21+9x1-18=0,∴x1=$\frac{3}{2}$,或x1=-6(舍).
∵x=-1是y2=4x的准线,即抛物线的准线过椭圆的另一个焦点F1
设点P到抛物线y2=4x的准线的距离为PN,则|PF2|=|PN|.
又|PN|=x1+1=$\frac{5}{2}$,
∴|PF2|=$\frac{5}{2}$,|PF1|=2a-$\frac{5}{2}$=$\frac{7}{2}$.
过点P作PP1⊥x轴,垂足为P1,PP1=$\sqrt{6}$,
∴${S}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}$|F1F2|•|PP1|=$\sqrt{6}$.
故选:A.

点评 本题考查三角形面积的求法,是中档题,解题时要认真审题,注意抛物线、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,$\frac{3π}{2}$),求secα-tanα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.从8个人中选出4人参加数学兴趣小组,但甲、乙、丙三人中至少有一人一定要参加,则共有多少种选法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点P是椭圆$\frac{y^2}{8}+\frac{x^2}{4}=1$上的点,F1,F2是它的两个焦点,且∠F1PF2=60°,则△F1PF2的面积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,且过点(2,$\sqrt{2}$).又M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,则$\frac{1}{{|{MN}|}}+\frac{1}{{|{PQ}|}}$为定值(  )
A.$\frac{{3\sqrt{2}}}{8}$B.$\frac{{5\sqrt{2}}}{8}$C.$\frac{{7\sqrt{2}}}{8}$D.$\frac{{\sqrt{2}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆C2过椭圆C1:$\frac{{x}^{2}}{14}+\frac{{y}^{2}}{9}=1$的两个焦点和短轴的两个端点,则椭圆C2的离心率为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C与椭圆E:$\frac{x^2}{7}+\frac{y^2}{5}=1$共焦点,并且经过点$A(1,\frac{{\sqrt{6}}}{2})$,
(1)求椭圆C的标准方程;
(2)在椭圆C上任取两点P、Q,设PQ所在直线与x轴交于点M(m,0),点P1为点P关于轴x的对称点,QP1所在直线与x轴交于点N(n,0),探求mn是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且短轴长为6.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为1的直线l,使得l与曲线C相交于A,B两点,且以AB为直角的圆恰好经过原点?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线C与双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的渐近线,且C经过点$M(-3,2\sqrt{3})$,则双曲线C的实轴长为3.

查看答案和解析>>

同步练习册答案