精英家教网 > 高中数学 > 题目详情
10.已知双曲线C与双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的渐近线,且C经过点$M(-3,2\sqrt{3})$,则双曲线C的实轴长为3.

分析 由双曲线C与双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的渐近线,设出方程,把点$M(-3,2\sqrt{3})$,代入求出λ再化简即可.

解答 解:由题意双曲线C与双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的渐近线,设所求的双曲线的方程为$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=λ$(λ≠0),
因为且C经过点$M(-3,2\sqrt{3})$,所以1-$\frac{3}{4}$=λ,即λ=$\frac{1}{4}$,
代入方程化简得,$\frac{{x}^{2}}{\frac{9}{4}}-\frac{{y}^{2}}{4}=1$,双曲线C的实轴长为:3.
故答案为:3.

点评 本题考查双曲线特有的性质:渐近线,熟练掌握双曲线有共同渐近线的方程特点是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知抛物线y2=4x,椭圆$\frac{x^2}{9}+\frac{y^2}{b}=1$,它们有共同的焦点F2,若P是两曲线的一个公共点,且F1是椭圆的另一个焦点,则△PF1F2的面积为(  )
A.$\sqrt{6}$B.$2\sqrt{6}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,已知椭圆C:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{6}=1$,设第一象限内的点R(x0,y0)在椭圆C上,从原点O向圆R:(x-x02+(y-y02=4作两条切线,切点分别为P、Q.
(Ⅰ)当OP⊥OQ时,求圆R的方程;
(Ⅱ)是否存在点R,当直线OP,OQ斜率k1、k2都存在时,使得k1k2-$\frac{{k}_{1}+{k}_{2}}{{x}_{0}{y}_{0}}$+1=0?若存在,求点R的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,多面体SABCD中面ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=$\sqrt{3}$AD.
(I)求证:面SDB⊥面ABCD.
(Ⅱ)求面SBD与面SAB所成的二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.阅读如图所示的程序框图,运行相应的程序,若输入n的值为4,则输出S的值为(  )
A.20B.40C.77D.546

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.倾斜角为60°的直线l过抛物线y2=4x的焦点F,且与抛物线位于x轴上的部分相交于A,则△OFA的面积为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{2\sqrt{3}}}{3}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\frac{1}{2}{x^2}+mlnx-2x$在定义域内是增函数,则实数m的取值范围是(  )
A.m≤1B.m≥1C.m<1D.m>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=xn+f′(1)(n∈N),曲线y=f(x)在点(1,f(1))处的切线与直线x+3y-2=0垂直,则f(-1)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x-2|-2|x+1|.
(1)求f(x)的最大值;
(2)若f(x)≤mx+3+m恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案