精英家教网 > 高中数学 > 题目详情
5.阅读如图所示的程序框图,运行相应的程序,若输入n的值为4,则输出S的值为(  )
A.20B.40C.77D.546

分析 由图知,每次进入循环体后,S的值被施加的运算是S=S+2k+k,故由此运算规律进行计算,当k=5时不满足条件k≤4,退出循环,输出S的值为40.

解答 解:由题意,模拟执行程序,可得:
n=4,k=1,S=0
满足条件k≤4,S=0+21+1=3,k=2
满足条件k≤4,S=3+22+2=9,k=3
满足条件k≤4,S=9+23+3=20,k=4
满足条件k≤4,S=20+24+4=40,k=5
不满足条件k≤4,退出循环,输出S的值为40.
故选:B.

点评 本题考查循环结构,已知运算规则与运算次数,求最后运算结果,是算法中一种常见的题型,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,且过点(2,$\sqrt{2}$).又M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,则$\frac{1}{{|{MN}|}}+\frac{1}{{|{PQ}|}}$为定值(  )
A.$\frac{{3\sqrt{2}}}{8}$B.$\frac{{5\sqrt{2}}}{8}$C.$\frac{{7\sqrt{2}}}{8}$D.$\frac{{\sqrt{2}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若椭圆的离心率为$\frac{1}{2}$,短轴长为2$\sqrt{3}$,焦点在x轴上,则椭圆的标准方程为(  )
A.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$B.$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{9}=1$C.$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{3}=1$D.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在如图所示的几何体EFABC中,已知△ABC是等腰三角形,AB=AC,AF⊥平面ABC,D为BC的中点,DE∥AF且BC=AF=2DE=2.
(1)求证:AB∥平面EFC;
(2)若∠BAC=120°,求二面角B-EF-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,已知圆柱OO1的底面半径是2,高是4,ABCD是圆柱的一个轴截面,动点E从B点出发,沿着圆柱的侧面到达点D,当其经过的路程最短时,在侧面留下的曲线是S,将轴截面ABCD绕着轴OO1逆时针旋转θ(0<θ<π)后,边B1C1和曲线S交于点F.
(1)当θ=$\frac{π}{2}$时,在A1D1上是否存在点G,使C1G∥平面A1BF;
(2)当θ=$\frac{π}{3}$时,试求二面角D-AB-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线C与双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的渐近线,且C经过点$M(-3,2\sqrt{3})$,则双曲线C的实轴长为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,且$|{\overrightarrow a}|=2\sqrt{2},|{\overrightarrow b}|=\sqrt{3}$,则$\overrightarrow a•\overrightarrow b$等于(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.$3\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.$\frac{2}{1+i}-\frac{1+i}{2}$=(  )
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{2}-\frac{1}{2}i$C.$\frac{1}{2}+\frac{3}{2}i$D.$\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=|x-1|+|2x+3|.
(1)若f(x)≥m对一切x∈R都成立,求实数m的取值范围;
(2)解不等式f(x)≤4.

查看答案和解析>>

同步练习册答案