精英家教网 > 高中数学 > 题目详情
17.设向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,且$|{\overrightarrow a}|=2\sqrt{2},|{\overrightarrow b}|=\sqrt{3}$,则$\overrightarrow a•\overrightarrow b$等于(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.$3\sqrt{2}$D.6

分析 根据向量数量积的定义计算.

解答 解:$\overrightarrow a•\overrightarrow b=2\sqrt{2}×\sqrt{3}×\frac{1}{2}=\sqrt{6}$.
故选:B.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,短轴的一个端点到焦点的距离为$\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过椭圆C的左焦点F且不与x轴重合的直线m,与椭圆C交于M,N两点,线段MN的垂直平分线与x轴交于点P,与椭圆C交于点Q,使得四边形MPNQ为菱形?若存在,请求出直线m的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在原点,对称轴为坐标轴,右焦点为F(2,0),离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)过点F且不垂直于坐标轴的直线l交椭圆C于不同的两点M,N,线段MN的垂直平分线与x轴交于点D,求点D的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.阅读如图所示的程序框图,运行相应的程序,若输入n的值为4,则输出S的值为(  )
A.20B.40C.77D.546

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知z=$\frac{2+i}{1-2i}$(i为虚数单位),则复数z=(  )
A.-1B.lC.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\frac{1}{2}{x^2}+mlnx-2x$在定义域内是增函数,则实数m的取值范围是(  )
A.m≤1B.m≥1C.m<1D.m>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知虚数$z=\frac{5}{3-4i}-\frac{4+3i}{5}$,则z的虚部是(  )
A.$-\frac{1}{5}$B.$-\frac{1}{5}i$C.$\frac{1}{5}$D.$\frac{1}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|-1<x<2},B={x|x2-3x<0},则∁RA∩B=(  )
A.(-1,3)B.(-1,2)C.(0,2)D.[2.3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=2sin(ωx+φ)的部分图象如图所示,则ω,φ的值分别是(  )
A.2,-$\frac{π}{3}$B.2,-$\frac{π}{6}$C.4,-$\frac{π}{6}$D.4,$\frac{π}{3}$

查看答案和解析>>

同步练习册答案