精英家教网 > 高中数学 > 题目详情
9.已知虚数$z=\frac{5}{3-4i}-\frac{4+3i}{5}$,则z的虚部是(  )
A.$-\frac{1}{5}$B.$-\frac{1}{5}i$C.$\frac{1}{5}$D.$\frac{1}{5}i$

分析 利用复数代数形式的乘除运算化简得答案.

解答 解:∵$z=\frac{5}{3-4i}-\frac{4+3i}{5}$=$\frac{5(3+4i)}{(3-4i)(3+4i)}-\frac{4}{5}-\frac{3i}{5}$=$\frac{3}{5}+\frac{4i}{5}-\frac{4}{5}-\frac{3i}{5}=-\frac{1}{5}+\frac{1}{5}i$,
∴z的虚部是$\frac{1}{5}$.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b≥1)的离心率e=$\frac{\sqrt{3}}{2}$,且椭圆C1上一点M到点Q(0,3)的距离的最大值为4.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设A(0,$\frac{1}{16}$),N为抛物线C2:y=x2上一动点,过点N作抛物线C2的切线交椭圆C1于B,C两点,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,已知圆柱OO1的底面半径是2,高是4,ABCD是圆柱的一个轴截面,动点E从B点出发,沿着圆柱的侧面到达点D,当其经过的路程最短时,在侧面留下的曲线是S,将轴截面ABCD绕着轴OO1逆时针旋转θ(0<θ<π)后,边B1C1和曲线S交于点F.
(1)当θ=$\frac{π}{2}$时,在A1D1上是否存在点G,使C1G∥平面A1BF;
(2)当θ=$\frac{π}{3}$时,试求二面角D-AB-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,且$|{\overrightarrow a}|=2\sqrt{2},|{\overrightarrow b}|=\sqrt{3}$,则$\overrightarrow a•\overrightarrow b$等于(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.$3\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率$e=\frac{{\sqrt{3}}}{2}$
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的两焦点分别为F1、F2,点P是椭圆C的上顶点,求△PF1F2内切圆方程;
(Ⅲ)若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,求证:直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.$\frac{2}{1+i}-\frac{1+i}{2}$=(  )
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{2}-\frac{1}{2}i$C.$\frac{1}{2}+\frac{3}{2}i$D.$\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,a1=1,an+1=(λ+1)Sn+1(n∈N*,λ≠-2),且3a1,4a2,a3+13成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=(2n+1)log4a2n,求数列$\{\frac{1}{b_n}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,已知三圆C1:x2+y2=4,C2:(x+$\sqrt{3}$)2+(y-1)2=4,C3:$\left\{\begin{array}{l}{x=\sqrt{3}+2cosθ}\\{y=1+2sinθ}\end{array}\right.$(θ为参数)有一公共点P(0,2).
(Ⅰ)分别求C1与C2,C1与C3异于点P的公共点M、N的直角坐标;
(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求经过三点O、M、N的圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图为一个几何体的三视图,则该几何体外接球的表面积为(  )
A.4$\sqrt{3}$πB.12πC.12$\sqrt{3}$πD.24π

查看答案和解析>>

同步练习册答案