精英家教网 > 高中数学 > 题目详情
19.如图为一个几何体的三视图,则该几何体外接球的表面积为(  )
A.4$\sqrt{3}$πB.12πC.12$\sqrt{3}$πD.24π

分析 几何体为直三棱柱,作出直观图,根据三棱柱的结构特征找出外接球的球心外置,计算半径.

解答 解:由三视图可知该几何体为直三棱柱ABC-A'B'C',
作出直观图如图所示:则AB⊥BC,AB=BC=2,AA'=2.∴AC=2$\sqrt{2}$.
∴三棱柱的外接球球心为平面ACC'A'的中心O,
∴外接球半径r=OA=$\frac{1}{2}$AC'=$\frac{1}{2}$$\sqrt{{2}^{2}+(2\sqrt{2})^{2}}$=$\sqrt{3}$.
∴外接球的表面积S=4π×$(\sqrt{3})^{2}$=12π.
故选B.

点评 本题考查了棱柱与外接球的三视图和结构特征,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知虚数$z=\frac{5}{3-4i}-\frac{4+3i}{5}$,则z的虚部是(  )
A.$-\frac{1}{5}$B.$-\frac{1}{5}i$C.$\frac{1}{5}$D.$\frac{1}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且a2=2b.
(1)求椭圆的方程;
(2)直线l:x-y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=2sin(ωx+φ)的部分图象如图所示,则ω,φ的值分别是(  )
A.2,-$\frac{π}{3}$B.2,-$\frac{π}{6}$C.4,-$\frac{π}{6}$D.4,$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直线l:$\frac{x}{4}+\frac{y}{3}=1$与x轴、y轴分别相交于点A、B,O为坐标原点,则△OAB的内切圆的方程为(x-1)2+(y-1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知4sinα+3cosα=0,则$\frac{{sin({4π-α})cos({5π+α})cos({\frac{9π}{2}+α})cos({\frac{15π}{2}-α})}}{{cos({π-α})sin({3π-α})sin({9π-α})sin({\frac{13π}{2}+α})}}$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn=an+$\frac{1}{2}{n^2}+\frac{3}{2}n-2(n∈{N^*})$.
(1)求数列{an}的通项公式;
(2)若bn=$\left\{\begin{array}{l}\frac{1}{{({a_n}-1)({a_n}+1)}},n为奇数\\ 4(\frac{1}{2}{)^{a_n}},n为偶数\end{array}$,且数列{bn}的前n项和为Tn,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知曲线f(x)=ex-ax在点(0,f(0))处的切线方程为3x+y+b=0,则下列不等式恒成立的是(  )
A.f(x)≥2-4ln2B.f(x)≤2-4ln2C.f(x)≥4-8ln2D.f(x)≤4-8ln2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC中,a,b,c分别为内角A,B,C的对边,且a•cosB+b•cosA=3c•cosC,则cosC=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案