精英家教网 > 高中数学 > 题目详情
8.已知曲线f(x)=ex-ax在点(0,f(0))处的切线方程为3x+y+b=0,则下列不等式恒成立的是(  )
A.f(x)≥2-4ln2B.f(x)≤2-4ln2C.f(x)≥4-8ln2D.f(x)≤4-8ln2

分析 求出函数的导数,可得切线的斜率,由切线的方程可得斜率,解方程可得a,求出单调区间、极值和最值,即可得到结论.

解答 解:f(x)=ex-ax的导数为f′(x)=ex-a,
可得在点(0,f(0))处的切线斜率为1-a,
由切线方程为3x+y+b=0,可得1-a=-3,
即有a=4,
可得f′(x)=ex-4,
当x>ln4时,f′(x)>0,f(x)递增;
当x<ln4时,f′(x)<0,f(x)递减.
可得f(x)在x=ln4处取得极小值,也为最小值4-8ln2.
即为f(x)≥4-8ln2.
故选:C.

点评 本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,已知三圆C1:x2+y2=4,C2:(x+$\sqrt{3}$)2+(y-1)2=4,C3:$\left\{\begin{array}{l}{x=\sqrt{3}+2cosθ}\\{y=1+2sinθ}\end{array}\right.$(θ为参数)有一公共点P(0,2).
(Ⅰ)分别求C1与C2,C1与C3异于点P的公共点M、N的直角坐标;
(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求经过三点O、M、N的圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图为一个几何体的三视图,则该几何体外接球的表面积为(  )
A.4$\sqrt{3}$πB.12πC.12$\sqrt{3}$πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}|{ln(-x)}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$,若H(x)=[f(x)]2-2bf(x)+3有8个不同的零点,则实数b的取值范围为($\sqrt{3}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$+$\overrightarrow{b}$=(3,-1),$\overrightarrow{a}$-$\overrightarrow{b}$=(-1,-3),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在长方体ABCD-A1B1C1D1中,如果对角线AC1与过点A的相邻三个面所成的角分别是α,β,γ,那么cos2α+cos2β+cos2γ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设F1(-1,0),F2(1,0)是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,P为E的上顶点,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=2,则a=(  )
A.1B.2C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.
(I)证明:平面A1CO⊥平面BB1D1D;
(Ⅱ)若∠BAD=60°,求二面角B-OB1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x,y满足条件$\left\{\begin{array}{l}x-y≥-1\\ x+y≤4\\ x-2y≤0\end{array}\right.$,若使z=ax+y取到最大值的最优解有无数个,则实数a=(  )
A.-1B.1C.±1D.$-\frac{1}{2}$

查看答案和解析>>

同步练习册答案