分析 由已知得cosα=$\frac{A{B}_{1}}{A{C}_{1}}$,cosβ=$\frac{A{D}_{1}}{A{C}_{1}}$,cosγ=$\frac{AC}{A{C}_{1}}$,由此能求出cos2α+cos2β+cos2γ的值.
解答
解:∵在长方体ABCD-A1B1C1D1中,B1C1⊥面AB1,
∴AC1与面AB1所成的角为∠C1AB1=α,
同理AC1与面AD1所成的角为∠C1AD1=β,
AC1与面AC所成的角为∠C1AC=γ,
∵cosα=$\frac{A{B}_{1}}{A{C}_{1}}$,cosβ=$\frac{A{D}_{1}}{A{C}_{1}}$,cosγ=$\frac{AC}{A{C}_{1}}$,
∴cos2α+cos2β+cos2γ
=$\frac{A{{B}_{1}}^{2}}{A{{C}_{1}}^{2}}$+$\frac{A{{D}_{1}}^{2}}{A{{C}_{1}}^{2}}$+$\frac{A{C}^{2}}{A{{C}_{1}}^{2}}$
=$\frac{A{B}^{2}+A{{A}_{1}}^{2}}{A{{C}_{1}}^{2}}$+$\frac{A{D}^{2}+A{{A}_{1}}^{2}}{A{{C}_{1}}^{2}}$+$\frac{A{B}^{2}+A{D}^{2}}{A{{C}_{1}}^{2}}$
=$\frac{2(A{B}^{2}+A{D}^{2}+A{{A}_{1}}^{2})}{A{{C}_{1}}^{2}}$
=$\frac{2A{{C}_{1}}^{2}}{A{{C}_{1}}^{2}}$
=2.
故答案为:2.
点评 本题考查线面角的余弦值的平方和的求法,是中档题,解题时要认真审题,注意长方体的性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | 6 | C. | 3+$\sqrt{3}$ | D. | $\frac{9+\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{3}$,0) | B. | (-$\frac{1}{3}$,0) | C. | (-$\frac{1}{3}$,+∞) | D. | (-∞,-$\frac{1}{3}$)∪(0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)≥2-4ln2 | B. | f(x)≤2-4ln2 | C. | f(x)≥4-8ln2 | D. | f(x)≤4-8ln2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{5}-1$ | D. | $\frac{\sqrt{2}+\sqrt{10}}{2}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com