精英家教网 > 高中数学 > 题目详情
5.如图所示,△ABC内接于⊙O,直线AD与⊙O相切于点A,交BC的延长线于点D,过点D作DE∥CA交BA的延长线于点E.
(I)求证:DE2=AE•BE;
(Ⅱ)若直线EF与⊙O相切于点F,且EF=4,EA=2,求线段AC的长.

分析 (Ⅰ)推导出△AED∽△DEB,由此能证明DE2=AE•BE.
(Ⅱ)由切割线定理得EF2=EA•EB,由DE∥CA,得△BAC∽△BED,由此能求出AC.

解答 证明:(Ⅰ)∵AD是⊙O的切线,∴∠DAC=∠B,
∵DE∥CA,∴∠DAC=∠EDA,∴∠EDA=∠B,
∵∠AED=∠DEB,∴△AED∽△DEB,
∴$\frac{DE}{BE}=\frac{AE}{DE}$,∴DE2=AE•BE.
解:(Ⅱ)∵EF是⊙O的切线,EAB是⊙O割线,
∴EF2=EA•EB,
∵EF=4,EA=2,∴EB=8,AB=EB-EA=6,
由(Ⅰ)知DE2=AE•BE,∴DE=4,
∵DE∥CA,∴△BAC∽△BED,
∴$\frac{BA}{BE}=\frac{AC}{ED}$,
∴AC=$\frac{BA•ED}{BE}$=$\frac{6×4}{8}=3$.

点评 本题考查与圆有关的线段间等量关系的证明,考查线段长的求法,是中档题,解题时要认真审题,注意切割线定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知f(x)=|x-1|+|2x+3|.
(1)若f(x)≥m对一切x∈R都成立,求实数m的取值范围;
(2)解不等式f(x)≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}|{ln(-x)}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$,若H(x)=[f(x)]2-2bf(x)+3有8个不同的零点,则实数b的取值范围为($\sqrt{3}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在长方体ABCD-A1B1C1D1中,如果对角线AC1与过点A的相邻三个面所成的角分别是α,β,γ,那么cos2α+cos2β+cos2γ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设F1(-1,0),F2(1,0)是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,P为E的上顶点,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=2,则a=(  )
A.1B.2C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB=4,AB∥CD,∠BCD=90°,M为棱PA的中点.
(I)证明:平面BDM⊥平面PAD;
(Ⅱ)在棱PC上是否存在一点N,使得直线BN与平面BDM所成角为30°?若存在,求出CN长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.
(I)证明:平面A1CO⊥平面BB1D1D;
(Ⅱ)若∠BAD=60°,求二面角B-OB1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥P-ABC中,F、G、H分别是PC、AB、BC的中点,PA⊥平面ABC,PA=AB=AC=2,二面角B-PA-C为120°.
(I)证明:FG⊥AH;
(Ⅱ)求二面角A-CP-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知在四陵锥P-ABCD中,底面ABCD是边长为2的菱形,∠BCD=120°,AP=BP,∠APB=90°,PC=2.
(1)求证:AB⊥PC;
(2)求二面角B-PC一D的余弦值.

查看答案和解析>>

同步练习册答案