精英家教网 > 高中数学 > 题目详情
14.如图,在三棱锥P-ABC中,F、G、H分别是PC、AB、BC的中点,PA⊥平面ABC,PA=AB=AC=2,二面角B-PA-C为120°.
(I)证明:FG⊥AH;
(Ⅱ)求二面角A-CP-B的余弦值.

分析 (I)根据线面垂直的性质定理即可证明FG⊥AH;
(Ⅱ)建立坐标系求出平面的法向量,利用向量法进行求解即可求二面角A-CP-B的余弦值.

解答 解:(I)设AC的中点是M,连接FM,GM,
∵PF=FC,∴FM∥PA,
∵PA⊥平面ABC,
∴FM⊥平面ABC,
∵AB=AC,H是BC的中点,
∴AH⊥BC,
∵GM∥BC,
∴AH⊥GM,
∴GF⊥AH
(Ⅱ)建立以A为坐标原点的空间直角坐标系如图:
则P(0,0,2),H($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,0),C(0,2,0),B($\sqrt{3}$,-1,0),F(0,1,1),
则平面PAC的法向量为$\overrightarrow{m}$=(1,0,0),
设平面PBC的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PC}=2y-2z=0}\\{\overrightarrow{n}•\overrightarrow{CB}=\sqrt{3}x-3y=0}\end{array}\right.$,令z=1,则y=1,x=$\sqrt{3}$,
即$\overrightarrow{n}$=($\sqrt{3}$,1,1),
cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{15}}{5}$,
即二面角A-CP-B的余弦值是$\frac{\sqrt{15}}{5}$.

点评 本小题主要考查直线垂直的证明和二面角的求解,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力,综合性较强,运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知4sinα+3cosα=0,则$\frac{{sin({4π-α})cos({5π+α})cos({\frac{9π}{2}+α})cos({\frac{15π}{2}-α})}}{{cos({π-α})sin({3π-α})sin({9π-α})sin({\frac{13π}{2}+α})}}$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,△ABC内接于⊙O,直线AD与⊙O相切于点A,交BC的延长线于点D,过点D作DE∥CA交BA的延长线于点E.
(I)求证:DE2=AE•BE;
(Ⅱ)若直线EF与⊙O相切于点F,且EF=4,EA=2,求线段AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知P,Q分别是直线l:x-y-2=0和圆C:x2+y2=1上的动点,圆C与x轴正半轴交于点A(1,0),则|PA|+|PQ|的最小值为(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}-1$D.$\frac{\sqrt{2}+\sqrt{10}}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC中,a,b,c分别为内角A,B,C的对边,且a•cosB+b•cosA=3c•cosC,则cosC=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设Sn为数列{an}的前n项和,且Sn=(-1)nan-$\frac{1}{{2}^{n}}$.
(I)求a1,a2,a3
(Ⅱ)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在极坐标系中,已知点$A(2,\frac{π}{4})$,圆C的方程为$ρ=4\sqrt{2}sinθ$(圆心为点C),求直线AC的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在椭圆E:$\frac{x^2}{4}+{y^2}=1$上任取一点P,过P作x轴的垂线PD,D为垂足,点M满足$\overrightarrow{DM}=2\overrightarrow{DP}$,点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点B1(0,1)作直线交椭圆E于A1,B1,交曲线C于A2,B2,当|A1B1|最大时,求|A2B2|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的公差d≠0,首项a1=4,a1,a3,a7成等比数列,设数列{an}的前n项和为Sn(n∈N).
(I)求an和Sn
(II)若bn=$\left\{\begin{array}{l}{{a}_{n}(2{S}_{n}<5{a}_{n})}\\{\frac{1}{{S}_{n}}(2{S}_{n}>5{a}_{n})}\end{array}\right.$数列{bn}的前n项和Tn,求证4≤Tn<18$\frac{37}{180}$.

查看答案和解析>>

同步练习册答案