精英家教网 > 高中数学 > 题目详情
6.已知集合A={x|-1<x<2},B={x|x2-3x<0},则∁RA∩B=(  )
A.(-1,3)B.(-1,2)C.(0,2)D.[2.3)

分析 求出A的补集∁RA,再化简B,求出∁RA∩B即可.

解答 解:∵集合A={x|-1<x<2},
∴∁RA={x|x≤-1或x≥2}=(-∞,-1]∪[2,+∞),
又B={x|x2-3x<0}={x|0<x<3}=(0,3),
∴∁RA∩B=[2,3).
故选:D.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若椭圆的离心率为$\frac{1}{2}$,短轴长为2$\sqrt{3}$,焦点在x轴上,则椭圆的标准方程为(  )
A.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$B.$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{9}=1$C.$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{3}=1$D.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,且$|{\overrightarrow a}|=2\sqrt{2},|{\overrightarrow b}|=\sqrt{3}$,则$\overrightarrow a•\overrightarrow b$等于(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.$3\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.$\frac{2}{1+i}-\frac{1+i}{2}$=(  )
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{2}-\frac{1}{2}i$C.$\frac{1}{2}+\frac{3}{2}i$D.$\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,a1=1,an+1=(λ+1)Sn+1(n∈N*,λ≠-2),且3a1,4a2,a3+13成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=(2n+1)log4a2n,求数列$\{\frac{1}{b_n}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b∈(0,1),则函数f(x)=ax2-4bx+1在区间[1,+∞)上是增函数的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,已知三圆C1:x2+y2=4,C2:(x+$\sqrt{3}$)2+(y-1)2=4,C3:$\left\{\begin{array}{l}{x=\sqrt{3}+2cosθ}\\{y=1+2sinθ}\end{array}\right.$(θ为参数)有一公共点P(0,2).
(Ⅰ)分别求C1与C2,C1与C3异于点P的公共点M、N的直角坐标;
(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求经过三点O、M、N的圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=|x-1|+|2x+3|.
(1)若f(x)≥m对一切x∈R都成立,求实数m的取值范围;
(2)解不等式f(x)≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}|{ln(-x)}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$,若H(x)=[f(x)]2-2bf(x)+3有8个不同的零点,则实数b的取值范围为($\sqrt{3}$,2].

查看答案和解析>>

同步练习册答案