精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=xn+f′(1)(n∈N),曲线y=f(x)在点(1,f(1))处的切线与直线x+3y-2=0垂直,则f(-1)=2.

分析 求出f(x)的导数,求得切线的斜率,由两直线垂直的条件:斜率之积为-1,可得n=3,即可得到所求值.

解答 解:f(x)=xn+f′(1)的导数为f′(x)=nxn-1
即有f′(1)=n,
可得f(x)=xn+n,
f(x)在点(1,f(1))处的切线斜率为n,
由切线与直线x+3y-2=0垂直,可得n=3,
则f(-1)=(-1)3+3=2.
故答案为:2.

点评 本题考查导数的运用:求切线的斜率,考查两直线垂直的条件:斜率之积为-1,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且短轴长为6.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为1的直线l,使得l与曲线C相交于A,B两点,且以AB为直角的圆恰好经过原点?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线C与双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的渐近线,且C经过点$M(-3,2\sqrt{3})$,则双曲线C的实轴长为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.己知椭圆E:$\frac{x^2}{16}+\frac{y^2}{12}$=1和抛物线C:y2=8x,A,B是C的准线与E的两个交点,则|AB|=(  )
A..3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.$\frac{2}{1+i}-\frac{1+i}{2}$=(  )
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{2}-\frac{1}{2}i$C.$\frac{1}{2}+\frac{3}{2}i$D.$\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,右焦点为($\sqrt{2}$,0).
(1)求椭圆C的方程;
(2)若过原点O作两条互相垂直的射线,与椭圆交于A,B两点,求证:点O到直线AB的距离为定值;
(3)在(2)的条件下,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b∈(0,1),则函数f(x)=ax2-4bx+1在区间[1,+∞)上是增函数的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若偶函数f(x)在(-∞,0]上单调递减,a=f(log23),b=f(-1),c=f(2${\;}^{\frac{3}{2}}$),则a,b,c满足(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)=$\frac{4^x}{{2+{4^x}}}$,记[m]表示不超过实数m的最大整数,例如[1.2]=1,[-0.5]=-1,[2]=2,则函数$y=[f(x)-\frac{1}{2}]+[f(1-x)-\frac{1}{2}]$的值域为{-1,0}.

查看答案和解析>>

同步练习册答案