精英家教网 > 高中数学 > 题目详情
15.以下五个关于圆锥曲线的命题中:
①双曲线$\frac{x^2}{16}-\frac{y^2}{9}$=1与椭圆$\frac{x^2}{49}+\frac{y^2}{24}$=1有相同的焦点;
②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的.
③设A、B为两个定点,k为常数,若|PA|-|PB|=k,则动点P的轨迹为双曲线;
④过定圆C上一点A作圆的动弦AB,O为原点,若$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$,则动点P的轨迹为椭圆.
其中真命题的序号为①②(写出所有真命题的序号)

分析 对4个选项分别进行判断,即可得出结论.

解答 解:①双曲线$\frac{x^2}{16}-\frac{y^2}{9}$=1的焦点坐标为(±5,0),椭圆$\frac{x^2}{49}+\frac{y^2}{24}$=1的焦点坐标为(±5,0),所以双曲线$\frac{x^2}{16}-\frac{y^2}{9}$=1与椭圆$\frac{x^2}{49}+\frac{y^2}{24}$=1有相同的焦点,正确;
②不妨设抛物线为标准抛物线:y2=2px (p>0 ),即抛物线位于Y轴的右侧,以X轴为对称轴.
设过焦点的弦为PQ,PQ的中点是M,M到准线的距离是d.
而P到准线的距离d1=|PF|,Q到准线的距离d2=|QF|.
又M到准线的距离d是梯形的中位线,故有d=$\frac{|PF|+|QF|}{2}$,
由抛物线的定义可得:$\frac{|PF|+|QF|}{2}$=$\frac{|PQ|}{2}$=半径.
所以圆心M到准线的距离等于半径,
所以圆与准线是相切,正确.
③平面内与两个定点F1,F2的距离的差的绝对值等于常数k(k<|F1F2|)的点的轨迹叫做双曲线,当0<k<|AB|时是双曲线的一支,当k=|AB|时,表示射线,所以不正确;
④设定圆C的方程为x2+y2+Dx+Ey+F=0,点A(m,n),P(x,y),由$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$,可知P为AB的中点,则B(2x-m,2y-n),因为AB为圆的动弦,所以B在已知圆上,把B的坐标代入圆x2+y2+Dx+Ey+F=0得到P的轨迹仍为圆,当B与A重合时AB不是弦,所以点A除外,所以不正确.
故答案为:①②.

点评 本题主要考查了圆锥曲线的共同特征,同时考查了椭圆与双曲线的性质,考查的知识点较多,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E.
(Ⅰ)求证:AE=EB;
(Ⅱ)若EF•FC=$\frac{4}{5}$,求正方形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,MA为圆O的切线,A为切点,割线MC交圆O于B,C两点,MA=6,MB=3,AB=$\sqrt{17}$,∠BAC的角平分线与BC和圆O分别交于点D,E.
(Ⅰ)求证:$\frac{MA}{MC}$=$\frac{BD}{CD}$;
(Ⅱ)求AD和AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知p:{x|x≥-2},q:{x|x<3},请写出满足下列条件的x的集合:
(Ⅰ)p∧q为真;
(Ⅱ)p真q假;
(Ⅲ)p假q真.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设复数z=1+i(i是虚数单位),则$\frac{4}{z}$+z=(  )
A.1+3iB.1-3iC.3+3iD.3-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若f(x)=x2-2mx+4(m∈R) 在[2,+∞)单调递增,则m的取值范围为(  )
A.m=2B.m<2C.m≤2D.m≥2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知O是坐标原点,点A的坐标为(2,1),若点B(x,y)为平面区域$\left\{\begin{array}{l}x+y≤4\\ x≥1\\ y≥x\end{array}\right.$上的一个动点,则z=$\overrightarrow{OA}$•$\overrightarrow{OB}$的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线$x-\sqrt{3}y+2=0$的倾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,AB是圆O的直径,C为圆周上一点,过C作圆O的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E.
(1)求证:AB•DE=BC•CE;
(2)若AB=8,BC=4,求线段AE的长.

查看答案和解析>>

同步练习册答案