精英家教网 > 高中数学 > 题目详情
2.如图,AB是圆O的直径,C为圆周上一点,过C作圆O的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E.
(1)求证:AB•DE=BC•CE;
(2)若AB=8,BC=4,求线段AE的长.

分析 (1)连接BE,OC,OC∩BE=F,证明△EDC∽△BCA,即可证明AB•DE=BC•CE;
(2)证明四边形EFCD是矩形,△OBC是等边三角形,即可得出结论.

解答 (1)证明:连接BE,OC,AC,OC∩BE=F,则
∵CD是圆O的切线,
∴OC⊥l,
∵AD⊥l,∴AD∥OC,
∵AB是圆O的直径,∴AD⊥BE,
∵AD⊥l,∴l∥BE,
∴∠DCE=∠CBE=∠CAB,
∵∠EDC=∠BCA=90°,
∴△EDC∽△BCA,
∴$\frac{AB}{BC}$=$\frac{CE}{DE}$,
∴AB•DE=BC•CE;
(2)解:由(1)可知四边形EFCD是矩形,
∴DE=CF,
∵圆O的直径AB=8,BC=4,
∴∠ABC=60°
∴△OBC是等边三角形,
∴∠EBA=30°,AE=4.

点评 本题考查圆的切线的性质,考查三角形相似的性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.以下五个关于圆锥曲线的命题中:
①双曲线$\frac{x^2}{16}-\frac{y^2}{9}$=1与椭圆$\frac{x^2}{49}+\frac{y^2}{24}$=1有相同的焦点;
②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的.
③设A、B为两个定点,k为常数,若|PA|-|PB|=k,则动点P的轨迹为双曲线;
④过定圆C上一点A作圆的动弦AB,O为原点,若$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$,则动点P的轨迹为椭圆.
其中真命题的序号为①②(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,长方体ABCD-A1B1C1D1中,E是棱DC中点,AB=4,BB1=BC=2.
(1)求线段B1E的长;
(2)求点C1到平面B1ED1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,若不等式f(-2m2+2m-1)+f(8m+ek)>0(e是自然对数的底数),对任意的m∈[-2,4]恒成立,则整数k的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=sin(2x-$\frac{π}{6}$)的单调增区间是[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.阅读如图的程序框图,运行相应的程序,输出n的值为(  )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,每个函数图象都有零点,但不能用二分法求图中函数零点的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an}的前n项和为Sn,且公比q>1,a1=1,S4=5S2
(1)求an
(2)设bn=2nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知各项均为正数的数列{an}满足an+2+2$\sqrt{{a}_{n}{a}_{n+2}}$=4an+1-an(n∈N*),且a1=1,a2=4.
(1)证明:数列{$\sqrt{{a}_{n}}$}是等差数列;
(2)数列{$\frac{4n+2}{{a}_{n}{a}_{n+1}}$}的前项n和为Sn,求证:Sn<2.

查看答案和解析>>

同步练习册答案