【题目】在平面直角坐标系中,以原点为极点,
轴非负半轴为极轴,长度单位相同,建立极坐标系,曲线
的极坐标方程为
,直线
过点
,倾斜角为
.
(1)将曲线
的极坐标方程化为直角坐标方程,写出直线
的参数方程的标准形式;
(2)已知直线
交曲线
于
两点,求
.
科目:高中数学 来源: 题型:
【题目】李先生家住
小区,他工作在
科技园区,从家开车到公司上班路上有
两条路线(如图),
路线上有
三个路口,各路口遇到红灯的概率均为
;
路线上有
两个路口,各路口遇到红灯的概率依次为
.
(Ⅰ)若走
路线,求最多遇到1次红灯的概率;
(Ⅱ)若走
路线,求遇到红灯次数
的数学期望;
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数
的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.①若定点为
,写出
的一个阿波罗尼斯圆的标准方程__________;②△
中,
,则当△
面积的最大值为
时,
______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1,F2是椭圆C:
(a>b>0)的左、右焦点,过椭圆的上顶点的直线x+y=1被椭圆截得的弦的中点坐标为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1的直线l交椭圆于A,B两点,当△ABF2面积最大时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,AA1
AB
AC
2,AB⊥AC,M是棱BC的中点点P在线段A1B上.
(1)若P是线段A1B的中点,求直线MP与直线AC所成角的大小;
(2)若
是
的中点,直线
与平面
所成角的正弦值为
,求线段BP的长度.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数
的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.①若定点为
,写出
的一个阿波罗尼斯圆的标准方程__________;②△
中,
,则当△
面积的最大值为
时,
______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函数f(x)的表达式;
(Ⅱ) 证明:当a>3时,关于x的方程f(x)= f(a)有三个实数解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直四棱柱
中,底面
是边长为6的正方形,点
在线段
上,且满足
,过点
作直四棱柱
外接球的截面,所得的截面面积的最大值与最小值之差为
,则直四棱柱
外接球的半径为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一副扑克牌有52张(不包括大小王),求:
(1)任取1张是红桃的概率;
(2)任取2张是同花色的概率;
(3)任取3张,至少有2张是同花色的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com