精英家教网 > 高中数学 > 题目详情

【题目】已知数列的首项为1,且,数列满足,对任意,都有.

(1)求数列的通项公式;

(2)令,数列的前项和为.若对任意的,不等式恒成立,试求实数的取值范围.

【答案】(Ⅰ) ;(Ⅱ)

【解析】

试题(1)由,得,又,两式相减得,整理得,即,又因为

利用累积法得

从而可求出数学的通项公式为

在数列中,由,得,且

所以数学是以首项为,公比为的等比数列,从而数列的通项公式为.

2)由题意得

两式相减得

由等比数列前项和公式可求得

由不等式恒成立,得恒成立,

)恒成立,

构造函数),

时,恒成立,则不满足条件;

时,由二次函数性质知不恒成立;

时,恒成立,则满足条件.

综上所述,实数的取值范围是

试题解析:(1(),两式相减得,

,即(),又因为,从而

()

故数列的通项公式()

在数列中,由,知数列是等比数列,首项、公比均为

数列的通项公式

2

①-②,得

不等式即为

)恒成立.

方法一、设),

时,恒成立,则不满足条件;

时,由二次函数性质知不恒成立;

时,恒成立,则满足条件.

综上所述,实数λ的取值范围是

方法二、也即)恒成立,

.则

单调递增且大于0单调递增

实数λ的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,则实数a的取值范围是(
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆 (a>b>0)的离心率为 ,焦点到相应准线的距离为1.
(1)求椭圆的标准方程;
(2)若P为椭圆上的一点,过点O作OP的垂线交直线 于点Q,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个同学分別抛掷一枚质地均匀的骰子.

(1)求他们抛掷的骰子向上的点数之和是4的倍数的概率;

(2)求甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海南沿海某次超强台风过后,当地人民积极恢复生产,焊接工王师傅每天都很忙碌.一天他遇到了一个难题:如图所示,有一块扇形钢板,半径为米,圆心角,施工要求按图中所画的那样,在钢板上裁下一块平行四边形钢板,要求使裁下的钢板面积最大.请你帮助王师傅解决此问题.连接,设,过,垂足为.

(1)求线段的长度(用来表示);

(2)求平行四边形面积的表达式(用来表示);

(3)为使平行四边形面积最大,等于何值?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)问:能否为偶函数?请说明理由;

(2)总存在一个区间,当时,对任意的实数,方程无解,当时,存在实数,方程有解,求区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱(侧棱垂直于底面)中,.

(1)证明:平面

(2)若的中点,在线段上是否存在一点使平面?若存在,请确定点的位置;若不存在,也请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.

(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)

(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项都是正数的等比数列{}Sn为前n项和,且S10=10S30=70,那么S40=______

查看答案和解析>>

同步练习册答案