【题目】海南沿海某次超强台风过后,当地人民积极恢复生产,焊接工王师傅每天都很忙碌.一天他遇到了一个难题:如图所示,有一块扇形钢板,半径为米,圆心角,施工要求按图中所画的那样,在钢板上裁下一块平行四边形钢板,要求使裁下的钢板面积最大.请你帮助王师傅解决此问题.连接,设,过作,垂足为.
(1)求线段的长度(用来表示);
(2)求平行四边形面积的表达式(用来表示);
(3)为使平行四边形面积最大,等于何值?最大面积是多少?
科目:高中数学 来源: 题型:
【题目】为了参加某运动会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
队别 | 北京 | 上海 | 天津 | 八一 |
人数 | 4 | 6 | 3 | 5 |
(1)从这18名队员中随机选出两名,求两人来自同一队的概率;
(2)若要求选出两名队员担任正副队长,设其中来自北京队的人数为,求随机变量的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,P为棱C1D1的中点,Q为棱BB1上的点,且BQ=λBB1(λ≠0).
(1)若 ,求AP与AQ所成角的余弦值;
(2)若直线AA1与平面APQ所成的角为45°,求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点为圆心的圆被直线:截得的弦长为.
(1)求圆的标准方程;
(2)求过与圆相切的直线方程;
(3)若是轴的动点,,分别切圆于,两点.试问:直线是否恒过定点?若是,求出恒过点坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的首项为1,且,数列满足,,对任意,都有.
(1)求数列、的通项公式;
(2)令,数列的前项和为.若对任意的,不等式恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:
组别 | PM2.5浓度 | 频数(天) | 频率 |
第一组 | (0,25] | 3 | 0.15 |
第二组 | (25,50] | 12 | 0.6 |
第三组 | (50,75] | 3 | 0.15 |
第四组 | (75,100] | 2 | 0.1 |
(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图. ①求图4中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,球的表面积为,球心为空间直角坐标系的原点,且球分别与轴的正交半轴交于三点,已知球面上一点.
(1)求两点在球上的球面距离;
(2)过点作平面的垂线,垂足,求的坐标,并计算四面体的体积;
(3)求平面与平面所成锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,,.
(Ⅰ)求“抽取的卡片上的数字满足”的概率;
(Ⅱ)求“抽取的卡片上的数字,,不完全相同”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com