精英家教网 > 高中数学 > 题目详情

【题目】海南沿海某次超强台风过后,当地人民积极恢复生产,焊接工王师傅每天都很忙碌.一天他遇到了一个难题:如图所示,有一块扇形钢板,半径为米,圆心角,施工要求按图中所画的那样,在钢板上裁下一块平行四边形钢板,要求使裁下的钢板面积最大.请你帮助王师傅解决此问题.连接,设,过,垂足为.

(1)求线段的长度(用来表示);

(2)求平行四边形面积的表达式(用来表示);

(3)为使平行四边形面积最大,等于何值?最大面积是多少?

【答案】(1)(2)(3)当时,所裁钢板的面积最大,最大面积为平方米.

【解析】

(1)先根据题意在中表示,再在中表示即可.

(2)由(1)知, 由可知,表示平行四边形面积,结合二倍角公式,逆用两角和的正弦公式表示即可.

(3)由(2)结合,求出函数最值即可.

解:(1)在中,

四边形为平行四边形

所以

(2)

设平行四边形的面积为

(3)由于

所以

,即时,

所以当时,所裁钢板的面积最大,最大面积为平方米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆.

(1)若直线过定点,且与圆相切,求的方程;

(2)若圆的半径为,圆心在直线上,且与圆外切,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了参加某运动会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:

队别

北京

上海

天津

八一

人数

4

6

3

5

(1)从这18名队员中随机选出两名,求两人来自同一队的概率;

(2)若要求选出两名队员担任正副队长,设其中来自北京队的人数为,求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,P为棱C1D1的中点,Q为棱BB1上的点,且BQ=λBB1(λ≠0).
(1)若 ,求AP与AQ所成角的余弦值;
(2)若直线AA1与平面APQ所成的角为45°,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点为圆心的圆被直线截得的弦长为.

(1)求圆的标准方程;

(2)求过与圆相切的直线方程;

(3)若轴的动点,分别切圆两点.试问:直线是否恒过定点?若是,求出恒过点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项为1,且,数列满足,对任意,都有.

(1)求数列的通项公式;

(2)令,数列的前项和为.若对任意的,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:

组别

PM2.5浓度
(微克/立方米)

频数(天)

频率

第一组

(0,25]

3

0.15

第二组

(25,50]

12

0.6

第三组

(50,75]

3

0.15

第四组

(75,100]

2

0.1


(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图. ①求图4中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,球的表面积为,球心为空间直角坐标系的原点,且球分别与轴的正交半轴交于三点,已知球面上一点.

(1)求两点在球上的球面距离;

(2)过点作平面的垂线,垂足,求的坐标,并计算四面体的体积;

(3)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为.

)求抽取的卡片上的数字满足的概率;

)求抽取的卡片上的数字不完全相同的概率.

查看答案和解析>>

同步练习册答案