精英家教网 > 高中数学 > 题目详情
16.两个人射击,甲射击一次中靶的概率为$\frac{1}{2}$,乙射击一次中靶的概率是$\frac{1}{3}$,两人各射击一次,中靶至少一次就算完成目标,则完成目标的概率$\frac{2}{3}$.

分析 两人各射击一次,中靶至少一次就算完成目标,分成三种情况①乙中靶甲不中②甲中靶乙不中③甲乙全中,分别计算三种情况的概率,即可得到答案;

解答 解:共三种情况:甲中靶乙不中$\frac{1}{2}$•$\frac{2}{3}$=$\frac{1}{3}$; 乙中靶甲不中$\frac{1}{2}$•$\frac{1}{3}$=$\frac{1}{6}$;
甲乙全中$\frac{1}{2}$•$\frac{1}{3}$=$\frac{1}{6}$.∴概率是$\frac{1}{6}$+$\frac{1}{6}$+$\frac{1}{3}$=$\frac{2}{3}$.   
故答案为:$\frac{2}{3}$.

点评 本题考查的知识点互斥事件的概率加法公式,对立事件的概率减法公式,n次独立重复试验中恰好发生k次的概率,在处理此类问题是,型清楚所求事件之间的关系,及所求事件是分类的(分几类?)还是分步的(分几步?)是解答的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图,等腰直角三角形ABC中,∠ACB=90°,在斜边AB上取两点M、N,使∠MCN=45°,设MN=x,BN=n,AM=m,则以x、m、n为边的三角形的形状为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.随x、m、n的值而定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-2,-6),|$\overrightarrow{c}$|=10,若($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=5,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.将4名同学等可能的分到甲、乙、丙三个班级.
(1)恰有2名同学被分到甲班的概率;
(2)这4名同学被分到2个班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且Sn=$\frac{3}{2}{n^2$+$\frac{1}{2}n$,递增的等比数列{bn}满足b1+b4=18,b2b3=32,
(1)求an,bn的通项公式;
(2)设cn=anbn,n∈N*,求数列cn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}前n项的和Sn=2•3n+b(b是常数),若这个数列是等比数列,那么b=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.设直线AB的斜率为k,若0<k≤$\sqrt{3}$,则e的取值范围为[$\sqrt{3}$-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,P为椭圆上一点,且|PF1|•|PF2|的最大值的取值范围是[2c2,3c2],其中c=$\sqrt{{a}^{2}-{b}^{2}}$,则椭圆的离心率的取值范围是(  )
A.[$\frac{1}{3}$,$\frac{1}{2}$]B.[$\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{3}}{3}$,1)D.[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,长轴长为2$\sqrt{2}$,离心率等于$\frac{\sqrt{2}}{2}$,
(1)求椭圆C的标准方程;
(2)直线l交椭圆于A、B两点,且AB的中点M为($\frac{1}{2}$,$\frac{1}{2}$),求直线l的方程.

查看答案和解析>>

同步练习册答案