精英家教网 > 高中数学 > 题目详情
3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,P为椭圆上一点,且|PF1|•|PF2|的最大值的取值范围是[2c2,3c2],其中c=$\sqrt{{a}^{2}-{b}^{2}}$,则椭圆的离心率的取值范围是(  )
A.[$\frac{1}{3}$,$\frac{1}{2}$]B.[$\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{3}}{3}$,1)D.[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$]

分析 根据题意,|PF1|•|PF2|的最大值为a2,则由题意知2c2≤a2≤3c2,由此能够导出椭圆m的离心率e的取值范围.

解答 解:∵|PF1|+|PF2|=2a
∴|PF1|•|PF2|≤a2
∴|PF1|•|PF2|max=a2
∴由题意知2c2≤a2≤3c2
∴$\sqrt{2}$c≤a≤$\sqrt{3}$c,
∴$\frac{\sqrt{3}}{3}≤e≤\frac{\sqrt{2}}{2}$.
故椭圆m的离心率e的取值范围[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$].
故选:D.

点评 本题考查椭圆的方程与性质,确定|PF1|•|PF2|的最大值=a2是正确解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx,g(x)=f(x)-$\frac{a}{x}$(a∈R) 
( I)判断函数g(x)的单调性;
(Ⅱ)是否存在实数m,使得f(x)+f(m-1)>m-$\frac{x+1}{x}$对任意x≥1恒成立,若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.两个人射击,甲射击一次中靶的概率为$\frac{1}{2}$,乙射击一次中靶的概率是$\frac{1}{3}$,两人各射击一次,中靶至少一次就算完成目标,则完成目标的概率$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知三棱锥A-PBC中,PA⊥面ABC,AB⊥AC,BA=CA=2PA=2,则三棱锥A-PBC底面PBC上的高是(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{2\sqrt{6}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{4\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的焦点为(-2,0)和(2,0),椭圆上一点到两焦点的距离之和为4$\sqrt{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=x+m(m∈R)与椭圆C交于A,B两点.当m变化时,求△AOB面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.F1、F2分别是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的两个焦点,P为椭圆C上一点,且$\overrightarrow{P{F_1}}$⊥$\overrightarrow{P{F_2}}$,若△PF1F2的面积为16,则b=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知公差不为0的等差数列{an}的前3项和S3=9,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式和前n项和Sn
(2)设Tn为数列$\left\{{\frac{1}{{{S_{n+1}}-1}}}\right\}$的前n项和,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t=0时,点A的坐标为($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则当0≤t≤6时,动点A的纵坐标y的取值范围是(  )
A.[-$\frac{1}{2}$,1]B.[-1,1]C.[-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$]D.[-$\frac{\sqrt{3}}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的两个焦点为F1、F2,点P是椭圆上任意一点(非左右顶点),则△PF1F2的周长为(  )
A.8B.6C.4D.3

查看答案和解析>>

同步练习册答案