精英家教网 > 高中数学 > 题目详情
13.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的两个焦点为F1、F2,点P是椭圆上任意一点(非左右顶点),则△PF1F2的周长为(  )
A.8B.6C.4D.3

分析 由椭圆的标准方程求得a,b,再由隐含条件求得c,则△PF1F2的周长可求.

解答 解:由椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,得a2=4,b2=3,
∴c2=a2-b2=4-3=1,
则a=2,c=1.
∴△PF1F2的周长为|PF1|+|PF2|+|F1F2|=2a+2c=2×2+2×1=6.
故选:B.

点评 本题考查了椭圆的标准方程,考查了椭圆的定义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,P为椭圆上一点,且|PF1|•|PF2|的最大值的取值范围是[2c2,3c2],其中c=$\sqrt{{a}^{2}-{b}^{2}}$,则椭圆的离心率的取值范围是(  )
A.[$\frac{1}{3}$,$\frac{1}{2}$]B.[$\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{3}}{3}$,1)D.[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,长轴长为2$\sqrt{2}$,离心率等于$\frac{\sqrt{2}}{2}$,
(1)求椭圆C的标准方程;
(2)直线l交椭圆于A、B两点,且AB的中点M为($\frac{1}{2}$,$\frac{1}{2}$),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,并且经过点(1,$\frac{3}{2}$).
(Ⅰ)求椭圆C的方程;
(Ⅱ)在椭圆C上任取一点P,过点P作x轴的垂线段PD,点D为垂足,若点M在线段DP的延长线上并且满足|DM|=$\frac{2\sqrt{3}}{3}$|DP|,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,椭圆中心在坐标原点,F为左焦点,当$\overrightarrow{FB}$⊥$\overrightarrow{AB}$时,该椭圆被称为“黄金椭圆”,其离心率为$\frac{\sqrt{5}-1}{2}$,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若Sn,Tn分别是等差数列{an},{bn}的前n项的和,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+1}{4n-2}$(n∈N*),则$\frac{{a}_{10}}{{b}_{3}+{b}_{18}}$+$\frac{{a}_{11}}{{b}_{6}+{b}_{15}}$=(  )
A.$\frac{39}{68}$B.$\frac{41}{68}$C.$\frac{39}{78}$D.$\frac{41}{78}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,A,B是椭圆W:$\frac{x^2}{3}$+y2=1的两个顶点,过点A的直线与椭圆W交于另一点C.
(Ⅰ)当AC的斜率为$\frac{1}{3}$时,求线段AC的长;
(Ⅱ)设D是AC的中点,且以AB为直径的圆恰过点D.求直线AC的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线y2=8x的焦点为F,准线为l,则抛物线上满足到定点A(0,4)和准线l的距离相等的点的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=sin(ωx+φ)(ω,φ是常数,ω>0,0<φ<π),若f(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上具有单调性,且f($\frac{π}{6}$)=-f($\frac{π}{3}$)=-f($\frac{π}{2}$),则f(π)的值为(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.0D.1

查看答案和解析>>

同步练习册答案