精英家教网 > 高中数学 > 题目详情
已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,O为坐标原点,过F2的直线l1与C1交于A,B两点,且△ABF1的周长为4
2
,l1的倾斜角为α.
(I)当l1垂直于x轴时,|AF2|+|BF2|=2
2
|AF2|•|BF2|

①求椭圆C1的方程;
②求证:对于?α∈[0,π),总有|AF2|+|BF2|=2
2
|AF2|•|BF2|

(II)在(I)的条件下,设直线l2与椭圆交于C,D两点,且OC⊥OD,过O作l2的垂线交l2于E,求E的轨迹方程C2,并比较C2与C1通径所在直线的位置关系.
分析:(I)由题意可得,4a=4
2
?a=
2
,当斜率不存在时,l1:x=c,
1
|AF2|
+
1
|BF2|
=
2a
b2
=
2
2
b2
=2
2
?b=1
C1
x2
2
+y2=1
;当α≠
π
2
时,设l1:y=k(x-1),A(x1,y1),B(x2,y2),由焦半径公式可得,|AF2|=
2
-
2
2
x1,|BF2|=
2
-
2
2
x2
,故
1
|AF2|
+
1
|BF2|
=
4
2
-
2
(x1+x2)
4-2(x1+x2)+x1x2
.由此能导出对于?α∈[0,π),总有|AF2|+|BF2|=2
2
|AF2|•|BF2|

(II)当斜率存在时,设l2:y=tx+b,C(x3,y3),D(x4,y4),
OC
OD
=x3x4+y3y4=(t2+1)x3x4+tb(x3+x4)+b2
y=tx+b
x2+2y2=2
?(1+2t2)x2+4tbx+2b2-2=0
,再由根的判别式和韦达定理进行求解.
解答:解:(I)①由题意可得,4a=4
2
?a=
2

当斜率不存在时,l1:x=c
1
|AF2|
+
1
|BF2|
=
2a
b2
=
2
2
b2
=2
2
?b=1

C1
x2
2
+y2=1

②当α≠
π
2
时,设l1:y=k(x-1),A(x1,y1),B(x2,y2
由焦半径公式可得,|AF2|=
2
-
2
2
x1,|BF2|=
2
-
2
2
x2

1
|AF2|
+
1
|BF2|
=
4
2
-
2
(x1+x2)
4-2(x1+x2)+x1x2

y=k(x-1)
x2+2y2=2
?(1+2k2)x2-4k2x+2k2-2=0
x1+x2=
4k2
1+2k2
x1x2=
2k2-2
1+2k2

1
|AF2|
+
1
|BF2|
=
4
2
-
4
2
k2
1+2k2
4-
8k2
1+2k2
+
2k2-2
1+2k2
=
4
2
+4
2
k2
2k2+2
=2
2

|AF2|+|BF2|=2
2
|AF2|•|BF2|
成立
α=
π
2
时,由题意成立
故对于?α∈[0,π),总有|AF2|+|BF2|=2
2
|AF2|•|BF2|

(II)当斜率存在时,设l2:y=tx+b,C(x3,y3),D(x4,y4
OC
OD
=x3x4+y3y4=(t2+1)x3x4+tb(x3+x4)+b2
y=tx+b
x2+2y2=2
?(1+2t2)x2+4tbx+2b2-2=0

△>0?2t2-b2+1>0
x3+x4=-
4tb
1+2t2
x3x4=
2b2-2
1+2t2

OC
OD
=
-2t2+3b2-2
1+2t2
=0?3b2-2=2t2

原点O到l2的距离为d=
|b|
1+t2
=
|b|
3
2
b2
=
2
3
为定值
故E的轨迹方程为x2+y2=
2
3
(y≠0)

当斜率不存在时,解得C(
2
3
,0),D(-
2
3
,0)
C(-
2
3
,0),D(
2
3
,0)
均在E上
综上可得,E的轨迹方程C2x2+y2=
2
3

C1通径所在的方程为x=±1
故两者相离.
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要灵活运用椭圆性质,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且|MF2|=
5
3

(1)求椭圆C1的方程;
(2)已知菱形ABCD的顶点A,C在椭圆C1上,对角线BD所在的直线的斜率为1.
①当直线BD过点(0,
1
7
)时,求直线AC的方程;
②当∠ABC=60°时,求菱形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的一条准线方程是x=
25
4
,其左、右顶点分别是A、B;双曲线C2
x2
a2
-
y2
b2
=1
的一条渐近线方程为3x-5y=0.
(1)求椭圆C1的方程及双曲线C2的离心率;
(2)在第一象限内取双曲线C2上一点P,连接AP交椭圆C1于点M,连接PB并延长交椭圆C1于点N,若
AM
=
MP
.求
MN
AB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,直线l:y=x+2
2
与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)与双曲线C2:x2-
y2
4
=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则b2=
0.5
0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,右顶点为A,离心率e=
1
2

(1)设抛物线C2:y2=4x的准线与x轴交于F1,求椭圆的方程;
(2)设已知双曲线C3以椭圆C1的焦点为顶点,顶点为焦点,b是双曲线C3在第一象限上任意-点,问是否存在常数λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案