精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知椭圆的左、右焦点分别为,其中也是抛物线的焦点,在第一象限的交点,且.(Ⅰ)求椭圆的方程;(Ⅱ)已知菱形的顶点AC在椭圆上,顶点BC在直线上,求直线 的方程.
(Ⅰ)   (Ⅱ)  ,即
(I)设.由抛物线定义,上,,又
        舍去.
∴椭圆的方程为
(II)∵直线的方程为为菱形,
,设直线的方程为
在椭圆上,
.   设,则

的中点坐标为,由为菱形可知,点在直线上,

∴直线的方程为,即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

抛物线的一组斜率为2的平行弦中点的轨迹是(     )
A.椭圆B.圆C.双曲线D.射线(不含端点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心在原点,其左焦点与抛物线的焦点重合,过的直线与椭圆交于AB两点,与抛物线交于CD两点.当直线x轴垂直时,
(Ⅰ)求椭圆的方程;
(II)求过点O、,并且与椭圆的左准线相切的圆的方程;
(Ⅲ)求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)一束光线从点出发,经直线l:上一点反射后,恰好穿过点.(1)求点的坐标;(2)求以为焦点且过点的椭圆的方程; (3)设点是椭圆上除长轴两端点外的任意一点,试问在轴上是否存在两定点,使得直线的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点,直线是它的一条准线,分别是椭圆的上、下两个顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设以原点为顶点,为焦点的抛物线为,若过点的直线与相交于不同的两点、,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线 与双曲线M相交于A、B两点,O是原点.
① 当为何值时,使得?
② 是否存在这样的实数,使A、B两点关于直线对称?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的两个焦点为,点在椭圆上,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过圆的圆心,交椭圆两点,且关于点对称,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,线段AB与CD互相垂直平分于点O,|AB|=2a(a>0),|CD|="2b" (b>0),动点P满足|PA|·|PB|=|PC|·|PD|.求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知有公共焦点的椭圆与双曲线中心在原点,焦点在轴上,左右焦点分别为,且它们在第一象限的交点为是以为底边的等要三角形,若,双曲线的离心率的取值范围为,则该椭圆的离心率的取值范围为       

查看答案和解析>>

同步练习册答案