已知(为常数)在上有最小值,那么此函数在上的最大值为( )
A. | B. | C. | D. |
D
解析试题分析:由已知,f′(x)=-6x2+12x,由-6x2+12x≥0得0≤x≤2,
因此当x∈[2,+∞),(-∞,0]时f(x)为减函数,在x∈[0,2]时f(x)为增函数,
又因为x∈[-2,2],所以得
当x∈[-2,0]时f(x)为减函数,在x∈[0,2]时f(x)为增函数,
所以f(x)min=f(0)=m=3,故有f(x)=-2x3+6x2+3
所以f(-2)=43,f(2)=11,,函数f(x)的最小值为f(-2)=43.故选D。
考点:本题主要考查应用导数研究函数的单调性,最值。
点评:小综合题,在某区间,导函数值非负,则函数为增函数;导函数值非正,则函数为减函数。确定最值,可遵循“求导数,求驻点,计算驻点及区间端点函数值,比较确定最值”。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com