精英家教网 > 高中数学 > 题目详情
(2010•湖北模拟)美国华尔街的次贷危机引起的金融风暴席卷全球,低迷的市场造成产品销售越来越难,为此某厂家举行大型的促销活动,经测算该产品的销售量P万件与促销费用x万元(x≥0)满足P=3-
2x+k
(k为常数),如果不搞促销活动,该产品的销售只能是一万件,已知生产该产品的固定投入是10万元,每生产1万件该产品需要再投入2万元,产品的销售价格定为该产品的平均成本(不含促销费用)的2倍.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
分析:(1)根据x=0时,P=1万件可求出k的值,然后根据产品的利润=销售额-产品的成本建立函数关系;
(2)利用基本不等式可求出该函数的最值,注意等号成立的条件.
解答:解:(1)由题意知x=0时,P=1万件,
1=3-
2
k
⇒k=1
,∴P=3-
2
x+1
…(2分)
该产品售价为2×(
10+2P
P
)
万元,y=2×(
10+2P
P
)•P-10-2P-x
…(4分)
代入化简得   y=17-(
4
x+1
+x+1)
,(x≥0)…(6分)
(2)y=17-(
4
x+1
+x+1)≤17-2
4
x+1
•(x+1)
=13
…(9分)
4
x+1
=x+1,即x=1
时,上式取等号                   …(11分)
所以促销费用投入1万元时,厂家的利润最大.           …(12分)
点评:本题主要考查了函数模型的选择与应用,以及基本不等式在最值问题中的应用,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•湖北模拟)如图,正方体AC1的棱长为1,连接AC1,交平面A1BD于H,则以下命题中,错误的命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.
(1)证明:AC⊥PB;
(2)证明:PB∥平面AEC;
(3)求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)等比数列{an}的公比为q,则“a1>0,且q>1”是“对于任意正自然数n,都有an+1>an”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)△ABC内接于以O为圆心,半径为1的圆,且3
OA
+4
OB
+5
OC
=
0
,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)已知数列|an|满足:an=n+1+
8
7
an+1
,且存在大于1的整数k使ak=0,m=1+
8
7
a1

(1)用k表示m(化成最简形式);
(2)若m是正整数,求k与m的值;
(3)当k大于7时,试比较7(m-49)与8(k2-k-42)的大小.

查看答案和解析>>

同步练习册答案