精英家教网 > 高中数学 > 题目详情
在△ABC中,a=2,A=30°,C=120°,则△ABC的面积为(  )
A、
2
B、2
2
C、
3
D、
3
+1
2
考点:正弦定理的应用
专题:解三角形
分析:利用三角形的内角和,计算B,可得边b,再利用三角形的面积公式,即可得到结论.
解答: 解:∵A=30°,C=120°,
∴B=30°,
∵a=2,∴b=2
S△ABC=
1
2
absinC=
1
2
×2×2×
3
2
=
3

故选C.
点评:本题考查三角形面积的计算,考查学生的计算能力,正确运用面积公式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知AB、MN为圆C:(x-2)2+y2=9的两条相互垂直的弦,垂足为R(3,a),若四边形ABMN的面积的最大值为14,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x+
3
4
,x≥2
log2x,0<x<2
,若函数g(x)=f(x)-k有两个不同的零点,则实数k的取值范围是(  )
A、(
3
4
,1)
B、(0,
3
4
C、(-∞,1)
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为a的正△ABC中,AD⊥BC于D,沿AD折成二面角B-AD-C后,BC=
1
2
a,这时二面角B-AD-C的大小为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的图象与y=2x的图象关于x轴对称,则f(x)的表达式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=
3
x
被圆x2+y2-2x=0所截得的弦长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有一枚正方体骰子,六个面分别写1、2、3、4、5、6的数字,规定“抛掷该枚骰子得到的数字是抛掷后,面向上的那一个数字”.已知a和b是先后抛掷该枚骰子得到的数字,函数f(x)=ax2+2bx+1(x∈R)
(1)若先抛掷骰子得到的数字是3,求再次抛掷骰子时,使函数y=f(x)有零点的概率;
(2)求函数y=f(x)在区间(-3,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,公差d≠0且S3+S5=50,a1,a4,a13成等比数列.则数列{an}的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2-5x+4=0},B={x|x2-ax+(a-1)=0},C={x|x2-mx+4=0},若A∪B=A,A∩C=C,求实数a,m的值.

查看答案和解析>>

同步练习册答案