精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求函数的单调递增区间;
(2)若的三个内角,且,又,求边的长.

(1);(2) 或.

解析试题分析:本题考查三角恒等变换、三角函数图象及其性质、解三角形等基础知识;考查学生运算求解能力;考查数形结合思想和分类整合思想.第一问,利用两角差的正弦公式、倍角公式化简表达式,使之化简为的形式,再结合图象求函数的单调递增区间;第二问,利用第一问化简的表达式,由,先求出A角的值,由于A角得到2个值,所以分情况讨论,利用正弦定理求BC的长.
试题解析:(1)      1分
        3分
                                  4分
令            5分
解得    
∴函数的递增区间是 .     6分
(2)由得, ,∵ , ∴ 或 .     8分
(1)当时,由正弦定理得,
;           10分
(2) 当时,由正弦定理得,
 .           12分
综上, 或.                 13分
考点:三角恒等变换、三角函数图象及其性质、解三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知, 且.
(1)求函数的解析式;
(2)当时, 的最小值是-4 , 求此时函数的最大值, 并求出相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的值域和函数的单调递增区间;
(2)当,且时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)定义在区间上的函数的图象关于直线对称,当
时函数图象如图所示.

(1)求函数的表达式;
(2)求方程的解;
(3)是否存在常数的值,使得上恒成立;若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.⑴试确定A,的值;⑵现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数图象的一部分如图所示.
(1)求函数的解析式;
(2)当时,求函数的最大值与最小值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的最小正周期为
(1)求的值;
(2)若函数的图像是由的图像向右平移个单位长度得到,求的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某实验室一天的温度(单位:)随时间(单位:)的变化近似满足函数关系;
.
(1)求实验室这一天上午8时的温度;
(2)求实验室这一天的最大温差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数),其图象的两个相邻对称中心的距离为.
(1)求函数的解析式;
(2)若△的内角为所对的边分别为(其中),且
 ,面积为,求的值.

查看答案和解析>>

同步练习册答案